
  

J. Clin. Med. 2020, 9, 4128; doi:10.3390/jcm9124128 www.mdpi.com/journal/jcm 

Review 

Molecular and Metabolic Subtypes Correspondence 
for Pancreatic Ductal Adenocarcinoma Classification 
Pilar Espiau-Romera, Sarah Courtois, Beatriz Parejo-Alonso and Patricia Sancho * 

Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, 50009 Zaragoza, Spain; 
pespiau@iisaragon.es (P.E.-R.); scourtois@iisaragon.es (S.C.); bparejo@iisaragon.es (B.P.-A.) 
* Correspondence: psancho@iisaragon.es 

Received: 14 October 2020; Accepted: 17 December 2020; Published: 21 December 2020 

Abstract: Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, 
is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. 
Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and 
genomic signatures, with partially overlapping subgroups, have been established. Besides 
molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound 
metabolic reprogramming involving increased glucose and amino acid consumption, as well as 
lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of 
metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular 
subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while 
glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic 
analyses have demonstrated that the representative genes of each metabolic subtype are up-
regulated in PDAC samples and predict patient survival. This suggests a relationship between the 
genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining 
metabolic subtypes represents a clear opportunity for patient stratification considering tumour 
functional behaviour independently of their mutational background. 
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1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid 
malignancies. It represents the third cause of cancer-related deaths in industrialised countries today 
[1] and it is predicted to become the second by 2030 [2]. Despite progress in the understanding of the 
molecular and genetic basis of this disease, five-year survival rates have remained below 10% after 
diagnosis and one-year survival occurs in only 28% of cases [3]. 

The reasons for the poor prognosis of this disease include bad accessibility to the organ, absence 
of distinct symptoms and high rate of metastasis, occurring in about 50% of patients [4]. On the other 
hand, there are no reliable biomarkers approved for early diagnosis [5]. 

Currently, the only available curative option for PDAC patients is surgical resection followed by 
adjuvant chemotherapy [4]. However, this occurs in a minority of patients, since 80–90% of them are 
diagnosed with advanced disease when the tumour is not resectable [6,7]. In addition, the 
heterogeneity and plasticity of PDAC tumours lead to chemoresistance [8]. In fact, several phase III 
trials of chemotherapy agents or targeted therapies effective in other malignancies have failed to 
benefit unselected PDAC populations. In addition, with the exception of the rare subset of mismatch 
repair-deficient tumours, checkpoint inhibitors have failed to show efficacy in metastatic patients. 

Under such circumstances, the solution possibly lies in early detection and proper classification 
of patients [4]. Patient stratification has become an invaluable tool for the clinical management of 
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cancer patients, providing diagnostic and prognostic information and, crucially, guiding therapeutic 
decisions, especially when targeted therapies for a specific mutation or subgroup are available. In 
fact, stratification had a key role improving survival rates in diseases such as breast cancer. However, 
patient stratification based on histomorphological or molecular features in PDAC has proved 
challenging, severely delaying the identification of such targeted therapies. This, together with the 
undruggable nature of mutated K-RAS (although clinical trials are underway to inhibit the mutation 
K-RASG12C), limits PDAC treatment to ineffective conventional chemotherapy. Genomic studies have 
revealed subtypes of PDAC based on their molecular features, but diverse studies have reported 
different classification systems incompletely overlapping. Interestingly, increasing efforts are being 
made in different directions. In fact, recent data suggest that PDAC tumours could also be classified 
attending to their metabolic phenotype. 

In this review, we describe and analyse the correspondence of most of the published molecular 
and metabolic signatures of PDAC and propose a modified metabolic signature that could stratify 
patients according to metabolic needs independently of the mutational load. 

2. PDAC Mutational Profile 

Many studies have been conducted on PDAC samples to determine molecular aberrations at 
DNA, RNA, protein and epigenetic levels [9]. In general terms, mutations in individual genes 
comprise 10 main pathways: DNA damage repair (TP53 or BRCA2), cell cycle regulation (Cyclin-
Dependent Kinase Inhibitor 2A, CDKN2A), Transforming growth factor-beta (TGF-β) pathway 
(SMAD4), NOTCH and WNT signalling, chromatin regulation, Extracellular Signalling Regulated 
Kinases (ERK)-Mitogen-Activated Protein Kinases (MAPK) signalling (K-RAS, B-RAF), axonal 
guidance and RNA processing [10,11]. 

Altogether, K-RAS gain of function, accounting for up to 90% of PDAC cases, and inactivation 
of the tumour suppressor genes p16/CDKN2A, SMAD4 and TP53 contribute to PDAC formation, 
maintenance, progression and, ultimately, metastasis onset. Occasionally, the mutations occur in 
other components of the pathway in which they are involved [9,12,13]. In addition, genome-wide and 
exome-wide analyses have identified a long list of less frequent alterations in genes related to axon 
orientation or DNA damage repair, such as BRCA1 or BRCA2 [12,14,15]. Moreover, most PDACs 
show complex patterns of chromosomal rearrangement [16,17]. 

Some findings have suggested a linear pathway of evolution from normal cells to PDAC cells, 
in which not all mutations occur at the same time. Telomere shortening is considered the trigger of 
pancreatic tumorigenesis by inducing genetic instability, coupled with a mutation in the K-RAS gene. 
Surviving cells are then altered by loss of CDKN2A function. In third place, the tumour suppressor 
genes TP53 and SMAD4 are inactivated, leading to intermediate stages called pancreatic intraductal 
neoplasias (PanINs) and, ultimately, full-blown PDAC [10,18]. However, it seems that in some cases, 
CDKN2A, TP53 and SMAD4 mutations can occur in a single event, which is called “punctuated 
equilibrium” [11]. 

2.1. K-RAS 

K-RAS is one of the three mutationally activated forms of the Ras protein, together with H-RAS 
and N-RAS. It is the most represented one among all cancers bearing RAS mutations, and the one 
exclusively mutated in PDAC. Moreover, it is known to be the main driver mutation for this disease, 
since K-RAS is mutated in >90% of the cases, thus making PDAC the most RAS-addicted of all cancer 
types [19]. However, K-RAS activation alone is not sufficient for PDAC development [20,21]. 

Ras proteins are small GTPases that act as signalling switches regulating cell proliferation, 
survival, differentiation and inflammation, by activating the MAPK module. In a normal scenario, 
Ras is found in its inactive form coupled to guanosine diphosphate (GDP) and, upon activation by 
diverse extracellular stimuli, Ras becomes active by coupling guanosine triphosphate (GTP), thus 
switching on downstream effectors such as ERKs, Jun Amino-Terminal Kinases (JNKs), Stress-
Activated Protein Kinases (p38/SAPKs) and PI3K/PDK1/AKT, amongst others [22,23]. In PDAC and 
other cancers bearing oncogenic K-RAS mutations, this protein is constitutively active in a GTP-
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bound state. PDAC-associated K-RAS alterations mainly harbour missense mutations that depend on 
allele dosage for tumorigenesis and metastasis onset, and contribute to PDAC evolution from PanINs 
to final cancer formation with the loss of other key PDAC-driving players [24]. 

2.2. p16/CDKN2A 

Along the evolutionary course of PDAC onset, K-RAS mutation is followed by the occurrence of 
genetic alterations in the tumour suppressor gene CDKN2A in 95% of PDAC patients [24]. Tumour 
suppressor genes are important to restrain aberrant cell proliferation in the context of oncogenic 
signalling and, to that end, these genes rely on different strategies such as cell cycle arrest, apoptosis 
or senescence induction. Specifically, the gene CDKN2A, encoding for P16INK4a and P14RF proteins, 
shows a dual mechanism: P16INK4a inhibits Cyclin Dependent Kinases (CDK) 2 and 4, thus 
preventing cell cycle to progress into S-phase, while P14RF triggers P53 by inhibiting its inhibitor, 
Mouse double minute 2 homolog (MDM2), thereby inducing growth arrest and apoptosis [25]. 

2.3. TP53 

P53, the protein encoded by the TP53 gene, is known to be the “genome guardian” due to its 
essential role upon chromatin damage. Amongst its main functions, we find cell cycle blockade and 
activation of DNA repair enzymes. Ultimately, P53 may lead the cell to a senescence state and/or 
apoptosis when DNA damage is no longer reparable. Genetic inactivation of TP53 is present in up to 
75% of all PDAC cases and appear in advanced PanINs after loss of CDKN2A. Loss of functional P53 
leads to an uncontrolled state of proliferation [25]. Importantly, mutant P53 may contribute to 
metastatic progression of K-RAS-driving PDAC-bearing mice, highlighting a novel role of this 
transcription factor in late stages of PDAC beyond the malignant transformation of PanINs into 
PDAC [26,27]. 

2.4. SMAD4 

SMAD4 serves as the central mediator of TGF-β pathway and it is known to be the fourth and, 
together with TP53, ultimate driver for PDAC initiation [28]. However, the role of SMAD4 in the 
pathogenesis of PDAC is complex and its final results are context-dependent. On the one hand, the 
TGF-β pathway is a well-accepted epithelial-to-mesenchymal transition (EMT) inducer [29], and also 
in PDAC [25], thus highlighting its pro-tumorigenic potential. Conversely, Smad4 signalling in the 
KPC (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre) mouse PDAC model mediates a tumour 
suppressive process known as “lethal EMT”. In this scenario, Smad4 triggers apoptosis through 
repression of the gastrointestinal lineage-master regulator Klf5 and, consequently, inhibits PDAC 
progression induced by Klf5/Sox4. Consequently, the loss of SMAD4 tumour suppressive function 
may contribute to pancreatic oncogenesis through the TFG-β canonical pathway [30]. 

3. PDAC Molecular Signatures 

Besides purely mutational analyses, a considerable number of genomic and transcriptomic 
studies in patient samples have identified the existence of PDAC subtypes with prognostic and 
biological relevance, as detailed below. 

Collisson et al. [31] reported the first exhaustive transcriptomic analysis on clinical samples, and 
based their classification on gene expression and molecular profiling. PDAC tissues were classified 
into “classical”, “quasi-mesenchymal” and “exocrine-like” (Table 1), with different prognoses and 
responses to selected therapies. The classical subtype showed high expression of epithelial and 
adhesion-associated genes, such as the transcription factor GATA6, and favourable prognosis 
regarding survival after PDAC resection. On the other hand, the quasi-mesenchymal subtype 
exhibited high expression of mesenchymal-associated genes, was relatively less dependent on K-RAS 
than the classical one, and, importantly, was associated with poor prognosis. Finally, the exocrine-
like subtype revealed high expression of digestive exocrine enzyme genes. However, the last subtype 
was not found in cancer cell lines, raising concerns about its specificity [32].
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Table 1. Molecular Pancreatic Ductal Adenocarcinoma (PDAC) signatures. 

Author Type of Study 
Type and Number of PDAC 

Samples 
Dysregulated Pathways and 

Mutations 
Outcome 

Collison et al. [31] Transcriptional 

1. Clinical samples 
microarray datasets 

Microdissected (n = 27) 
GSE15471 (n = 36) 
GSE11838 (n = 107) 
GSE16515 (n = 52) 

E-MEXP-950 (n = 50) 
2. Validation: 

Mouse cell lines (n = 15) 
Human cell lines (n = 19) 

Classical: (↑) Adhesion-
associated genes (GATA6). 

More K-RAS-dependent 
Good 

Quasi-mesenchymal: (↑) 
Mesenchymal associated 

genes 
Bad 

Exocrine: (↑) Digestive 
exocrine enzyme genes 

 

Moffit et al. [33] Transcriptional 

1. Microarray data 
Primary tumour (n = 145)  
Metastatic tumour (n = 61) 

Cell lines (n = 17)  
Pancreas normal samples (n 

= 46) 
Distant site adjacent samples 

(n = 88) 
2. Validation 

Primary tumours (n = 15) 
PDXs (n = 37) 

Cell lines (n = 3) 
CAF lines (n = 6) 

Classical: Classical Collison 
((↑) adhesion-associated 

genes (GATA6)) and SMAD4 
Good 

Basal: (↑) Genes also highly 
expressed in basal tumours 
in bladder and breast cancer 

Bad 

Normal stroma: (↑) 
Pancreatic stellate cells, 

smooth muscle actin, 
vimentin and desmin 

markers 

Good 

Activated stroma: (↑) 
Macrophages, tumour 

promotion and fibroblast 
activation-associated genes 

Bad 

Bailey et al. [10] 
Mutational  

Transcriptional 

Primary PDAC tumour 
samples and rare acinar cell 

carcinoma (n = 382)  
PDAC exomes (n = 74) 

Squamous: 
Hypermethylation and (↓) 
pancreatic endodermal cell 
fate genes. TP53, KDM6A 

and TP63∆N 

Bad 

Pancreatic progenitor: (↑) 
Pancreatic early 

development genes (PDX1) 
Good 

ADEX: (↑) K-RAS activation 
and pancreatic late 
development and 

differentiation genes 
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Immunogenic: (↑) Immune 
suppression and strong 

immune infiltration 
 

Zhao et al. [34]  Transcriptional (metanalysis) 

1. Microarray datasets of 
PDAC primary tumour 

samples (n = 1268) 
TCGA (n = 172) 

GSE79670 (n = 51) 
TCGC PACA-AU (n = 71) 

MTAB-1791 (n = 195)  
ICGC array (n = 178)  
GSE71729 (n = 145)  
GSE62165 (n = 118)  
GSE62452 (n = 69)  
GSE57495 (n = 63)  
GSE60980 (n = 49) 
GSE77858 (n = 46) 
GSE55643 (n = 45) 
GSE15471 (n = 39)  

L1: (↑) Metabolic genes  
L2: (↑) Metabolic, cell 

proliferation and epithelium 
genes (CDKN2A) 

Bad 

L3: (↑) Collagen and ECM 
associated genes 

 

L4: (↑) Immune profile Good 
L5: (↑) Neuroendocrine and 

insulin related pathways Good 

L6: (↑) Metabolic and 
digestive enzyme genes   

Lomberk et al. [35] Epigenetic 

1. PDXs (n = 24) 
2. Clinical samples 
microarray datasets 
GSE71729 (n = 145) 

ICGC (n = 178) 
TCGA (n = 172) 

Classical: (↑) TFs involved in 
pancreatic development, 

metabolic regulators and Ras 
signalling 

Good 

Basal: (↑) TF proliferative 
and transcription nodes 

Bad 

Maurer et al. [36] 
Transcriptional  

Computational modelling 

1. Primary PDAC tumour 
samples (n = 122) 

2. Clinical samples 
microarray datasets 

GSE71729 (UNC) (n = 125) 
ICGC (n = 93) 

TCGA (n= 127) 

Classical: Classical Moffit Good 
Basal: Basal Moffit Bad 

Immune-rich: (↑) immune 
and interleukin levels 

Good 

ECM-rich: (↑) matrix 
extracellular pathways 

Bad 

Dijk et al. [37] Transcriptional 

1. Primary PDAC tumour 
samples (n = 90) 

2. Pancreatic cancer PDXs 
cohort (n = 14) 

3. PDAC Cell lines cohort (n 
= 51) 

Epithelial: (↑) MYC, 
mitochondrial components 

and ribosome signature 
Good 

Mesenchymal: (↑) K-RAS, 
pathways related to EMT, 

stromal signalling and TGF-β 
Bad 

Compound pancreatic: 
Similar to the mesenchymal 
subtype and (↑) endocrine 

pathways 

Good 
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Chan-Seng-Yue et al. [38] 
Whole genome sequencing  

Transcriptional 

Laser capture microdissected 
samples from late-stage 

PDAC 
1. WGS (n = 314) 

2. Bulk RNAseq (n = 248) 
3. Single-cell RNAseq (n = 15) 

Classical A/B: (↑) SMAD4 
and GATA6 alterations 

Good 

Basal-like A/B: (↑) EMT and 
TGF-β pathways, loss of 

CDKN2A, TP53 mutations, K-
RAS imbalance 

Bad 

Hybrid Mid 

Nicolle et al. [39] Transcriptional PDXs (n = 76) 
Graded types between 

classical and basal based on 
tumour differentiation 

Grade dependant 

For each classification, type of study, type and number of samples, dysregulated pathways and mutations and prognosis are described in each column. Up-regulated 
and down-regulated pathways are shown as (↑) and (↓), respectively. CAF, Cancer-Associated Fibroblast; EMT, Epithelial-to-Mesenchymal Transition; PDAC, 
Pancreatic Ductal Adenocarcinoma; PDX, Patient-Derived Xenograft; TF, Transcription Factor; WGS, Whole Genome Sequencing. 
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Moffitt et al. [33] performed transcriptional analysis to classify PDAC tumours into two subtypes 
within two different tissues (Table 1): tumour and stroma. Based on tumour cells, PDAC samples 
were classified into “classical” and “basal” subtypes. The classical group was enriched in SMAD4 
and GATA6, while the basal subtype was molecularly similar to basal tumours in bladder and breast 
cancer. Although classical tumours showed better prognosis, patients with basal tumours responded 
better to adjuvant therapy. On the other hand, the stroma was divided into “normal” and “activated” 
subtypes. The normal stromal group showed high levels of markers for pancreatic stellate cells, 
smooth muscle actin, vimentin and desmin. However, the activated stromal subtype was defined by 
a complex set of genes associated with macrophages, tumour promotion and fibroblast activation; 
this described an activated pro-tumorigenic inflammatory stromal response with poor prognosis. 
Comparing their signature with Collisson’s [31], Moffitt et al. found an overlap between both classical 
subtypes, while genes in the quasi-mesenchymal subtype seemed a mixed selection of genes from 
basal and stromal subtypes (Table 2) [33]. 

Table 2. Molecular subtypes corresponding to PDAC classification.  

Authors Common Subtypes Others 

Collisson et al. [31] Classical Quasi-
mesenchymal 

Exocrine-
like 

 

Moffit et al. [33] Classical Basal-like  Normal and activated 
stroma 

Bailey et al. [39] Progenitor Squamous ADEX Immunogenic 
Zhao et al. [34] L1 L2 L6 L3, L4 and L5 

Lomberk et al. [35] Classical Basal   

Maurer et al. [36] Classical Basal  Immune-rich and ECM-
rich 

Dijk et al. [37] Epithelial Mesenchymal Secretory Compound pancreatic 
Chan-Seng-Yue et 

al. [38] Classical (A, B) Basal-like (A, B) Hybrid  

Nicolle et al. [39] From Classical to Basal   

Correlated subtypes are grouped in columns. Colours define the subgroups with the best (green) or 
worst (red) prognosis. ECM, Extracellular Matrix. 

Later, Bailey et al. [10] defined new molecular subtypes of PDAC based on comprehensive 
integrated genomic analysis and RNA expression profiles: “squamous”, “pancreatic progenitor”, 
“aberrantly differentiated endocrine exocrine” (ADEX) and “immunogenic” (Table 1). The squamous 
subtype was linked to hypermethylation and down-regulation of genes determining endodermal 
identity in pancreas, with poor prognosis in patients. It was also enriched in TP53 and KDM6A 
mutations and up-regulation of the transcriptional network TP63∆N. PDAC progenitor-type 
tumours expressed genes involved in early development of the pancreas, such as PDX1. The ADEX 
class overexpressed transcriptional pathways present in K-RAS activation and in late stages of 
pancreatic development and differentiation. Lastly, the immunogenic subtype had pancreatic 
progenitor features, but it was related to acquired immune suppression pathways (CTLA4 and PD-
1) and strong immune infiltration (B and T cells). When they compared their classification with earlier 
studies, three of their classes directly overlapped with Collisson’s groups [31]: Collisson’s classical, 
quasi-mesenchymal and exocrine-like subtypes matched Bailey’s pancreatic progenitor, squamous 
and ADEX groups, respectively (Table 2). In addition, 50% of the squamous subtype tumours were 
included in Moffitt’s basal subgroup [33]. 

In 2018, Zhao et al. [34] conducted a retrospective meta-analysis of complete transcriptome data 
from patients with PDAC (Table 1). They obtained six different subtypes grouped in tumour- (L1, L2 
and L6) and stromal-specific (L3, L4 and L5) subtypes. L1, L2 and L6 were all enriched in metabolic 
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genes, as detailed in Section 5. Besides metabolism, the subtypes were differentially enriched in other 
routes: L2 was related to cell proliferation and epithelium genes, such as CDKN2A; L3 had increased 
regulation of collagen and extracellular matrix (ECM)-associated genes; L4 had an immune profile; 
L5 was involved in neuroendocrine and insulin-related pathways; L6 showed activity of digestive 
enzymes. Each expression profile was related to clinical data: epithelium and proliferation in L2 
showed the poorest prognosis, immune and neuroendocrine profiles at L4 and L5 showed the best 
outcomes. Considering the above stratifications of PDAC, Zhao et al. found that L1 and L6 were very 
similar to the classical Moffit’s subtype, while L2 approached their basal subtype (Table 2). L1, L2 
and L6 were close to the activated subtype. In Bailey’s dataset, L1 and L4 approximated the 
immunogenic subtype, L2 the squamous, L3 the pancreatic progenitor and L6 resembled the ADEX 
subtype. Finally, L1 and L3 were similar to Collison’s classical subtype, L2 approached the quasi-
mesenchymal and L6 related to the exocrine-like one. 

Lomberk et al. [35] identified epigenomic landscapes of PDAC subtypes by performing an 
integrative analysis of genome-wide Chromatin Immunoprecipitation-sequencing (ChIP-seq) on 
multiple histone modifications, as well as RNA-sequencing (RNA-seq) and DNA methylation studies 
(Table 1). They reported two subtypes: “classical” and “basal”, which correlated with clinical 
parameters. Super enhancer mapping coupled with Transcription Factor (TF) binding motif and up-
regulation analysis showed that classical tumours were related to TFs involved in development of 
the pancreas, metabolic regulators and K-RAS signalling, while basal tumours correlated with 
proliferative and EMT TF nodes. The basal samples were linked to a more aggressive phenotype than 
the classical ones. 

Maurer et al. [36] used Laser Capture Microdissection (LCM) to separate stromal and epithelial 
compartments of PDAC bulk tumour samples, and confirmed using machine learning techniques 
that stromal contamination may interfere with PDAC classification (Table 1). In addition, they 
described two epithelial subtypes of PDAC that correlated with the classical and basal subtypes from 
Moffit et al., with the basal subtype having a poorer prognosis than the classical (Table 2). Moreover, 
they identified two stromal subtypes, an “immune-rich” group characterised by high immune and 
interleukin levels, and an “ECM-rich” group, associated with extracellular matrix pathways. The 
ECM-rich subtype appeared to have decreased survival compared with the immune-rich one. Finally, 
they found an association of the epithelial and stromal subtypes in which the basal epithelium 
subtype and the ECM-rich stroma were linked. 

In 2020, Dijk et al. [37] conducted an unsupervised consensus clustering and identified four 
molecular subtypes: “secretory”, “epithelial”, “compound pancreatic” and “mesenchymal” (Table 1). 
The secretory subtype showed enrichment in endocrine and exocrine pathways of the pancreas. 
Tumours of the epithelial subtype were characterised by up-regulation of the MYC oncogene and 
high expression of mitochondrial components and ribosome signature. The mesenchymal subtype 
had high levels of K-RAS transcription and was enriched in pathways related to EMT, stromal 
signalling and TGF-β. The compound pancreatic subtype presented similar characteristics to the 
mesenchymal subtype but, in addition, was enriched in endocrine functions. The secretory and 
mesenchymal subtypes presented worse prognosis than the epithelial and compound pancreatic 
ones. Dijk et al. found an interconnection between these subtypes and those described by Collison, 
Bailey and Moffit (Table 2). For example, the secretory subtype correlated significantly with 
Collison’s exocrine-like, Bailey’s ADEX, and Moffit’s basal subtypes. The epithelial subtype shared 
characteristics with the Collison’s and Moffit’s classical subtypes, but also with the Bailey´s pancreatic 
progenitor and squamous subtypes. The compound pancreatic group was similar to Collison’s 
exocrine, Bailey’s ADEX and Moffit’s classical. Lastly, the mesenchymal subtype correlated with 
Collison’s quasi-mesenchymal, Bailey’s squamous and Moffit’s basal. 

Chan-Seng-Yue et al. [38] performed whole genome sequencing and both bulk and single-cell 
RNAseq analyses on laser capture microdissected tumours from more than 200 late-stage patients. 
They identified three major subtypes: “classical”, “basal-like” and “hybrid” (Table 1). Although the 
classical and basal-like subtypes were fairly overlapped with the previous classifications by Moffit, 
Bailey and Collison (Table 2), they found that these subtypes could be subdivided into A and B 
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subclasses with differences in their response to chemotherapy, aggressiveness and disease stage. For 
example, basal-like A tumours are highly chemoresistant and feature a high squamous signature 
enriched in metastatic tumours, while basal-like B tumours correspond to a low squamous signature 
present in resectable tumours. Importantly, they found that classical and basal-like programs co-exist 
within a tumour and demonstrated that molecular subtypes are linked to a specific copy number 
aberrations in genes such as mutant K-RAS (basal-like subtype) and GATA6 (classical subtype). 

Finally, Nicolle et al. [39] proposed a molecular gradient classification to stablish a PDAC 
transcriptomic signature that could better represent the existence of intermediate cellular phenotypes 
between classical and basal-like subtypes (Table 1). In this study, they graded Patient-Derived 
Xenografts (PDXs) according to different molecular levels of differentiation and confirmed that the 
higher expression of genes linked to the classical PDAC subtype (GATA6) was correlated with 
increased differentiation of PDX samples, while lower expression of genes was linked to the basal-
like subtype. They also found that the higher the differentiation of the tumour, the better the 
prognosis and response to chemotherapy. 

Interestingly, although partial overlap amongst the different signatures and molecular subtypes 
can be found in these studies, recent works using single-cell transcriptomics demonstrated that 
several subtypes can co-exist within a tumour [38,40], further underlining the high level of 
heterogeneity present in PDAC tumours. Undoubtedly, more efforts in this direction are required to 
further dissect the complexity of these tumours, as well as to decipher the interplay of the different 
subpopulations during disease progression. 

4. Metabolic Reprogramming in PDAC 

At the histological level, one of the most notable characteristics of PDAC is its dense stroma, 
being up to 90% of the tumour volume. Its main features are extensive fibrosis, lack of vascularisation, 
hypoxia and immune infiltration. Hypoxia is associated with increased cancer cell proliferation, 
survival, EMT, invasiveness and metastasis [41]. 

The lack of vascularisation not only causes hypoxia in the tumour, but also causes metabolic 
stress due to nutrient deprivation. As a result, tumour cells undergo the so-called “metabolic 
reprogramming”, an updated hallmark of cancer [32,42]. Cancer cells increase nutrient acquisition 
along with enhanced flow through anabolic pathways. This leads to increased glycolysis and glucose 
transport, high glutamine consumption, lipid and amino acid biosynthesis and maintenance of redox 
homeostasis. In addition, recycling of cellular components also occurs through autophagy, which 
degrades macromolecular complexes and organelles into individual metabolites [41,43–45]. 

4.1. Warburg Phenotype 

The major example of metabolic reprogramming is higher glucose consumption. The role of 
glucose metabolism in cancer was well defined by Otto Warburg back in the late 1920s, leading to be 
considered one of the hallmarks of cancer [46]. Glycolytic flow is precisely controlled to fulfil rapid 
proliferative and synthetic needs. Unlike normal cells, tumour cells have high levels of glycolysis, even 
in the presence of oxygen and reduced mitochondrial function, leading to a state called “aerobic 
glycolysis”, also called the “Warburg effect”. On the other hand, the “reverse Warburg effect” describes 
a two-compartment model in which cancer cells induce aerobic glycolysis in the stromal cells, whose 
glycolysis end-products are transferred to the cancer cells to feed mitochondrial oxidative 
phosphorylation (OXPHOS). This allows tumours to respond to variations in nutrient availability and 
to optimise cell proliferation and growth [47]. Interestingly, this two-compartment model can also be 
applied considering the functional heterogeneity of cancer cells in PDAC: glycolytic differentiated 
tumour cells could provide substrates to oxidative cancer stem cells (CSCs) [48]. 

A hypothesis for metabolic rewiring towards enhanced glycolysis over the reduction of 
mitochondrial oxidation as a source of ATP in PDAC is the presence of a dense desmoplastic stroma, 
which basically impedes neovascularisation. This creates a hypoxic microenvironment in which oxygen 
and nutrients are limited [49]. This state creates a positive feedback loop by which, on the one hand, 
pancreatic cancer cells feel a selective pressure under the hypoxic and nutrient shortage where only the 
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most aggressive populations will remain. On the other hand, under such stress-driven situations, 
pancreatic cancer cells are forced to modify their metabolism in order to cope with their bioenergetic 
demands for PDAC progression, expansion and dissemination through the blood vessels towards less 
scarce environments [50]. Indeed, a recent study demonstrated that glycolysis and hypoxia signatures 
correlate in PDAC and that Prolyl 4-Hydroxylase subunit Alpha 1 (P4HA1), a critical enzyme involved 
in collagen synthesis, controls glycolysis through HIF1α stabilisation [51]. Moreover, gene expression 
arrays of metastatic PDAC revealed a glycolysis-based signature characterised by increased expression 
of many glycolytic enzymes [52], highlighting the importance of glycolytic metabolism in PDAC 
progression. In fact, Liu et al. recently demonstrated that the EMT-related gene SNAIL was able to 
induce a migratory phenotype in PDAC cell lines by promoting mesenchymal-related genes expression 
along with enhanced glucose uptake and lactate production [53]. 

Overall, the glycolytic state is characterised by an increased expression of glycolytic enzymes 
and glucose and lactate transporters, such as Glucose Transporter 1 (GLUT1), and Monocarboxylate 
Transporters 1 and 4 (MCT1, MCT4) [54,55]. Specifically, the overexpression of these membrane 
transporters leads to an enhanced glucose scavenging from the hypovascularised tumour 
microenvironment, which results in increased glucose availability in the cancer cell as well as a better 
balance of the glucose pathway in order to keep glycolysis at high rate. On the one hand, GLUT1 is 
an ATP-independent glucose transporter that enables glucose transference from a high-gradient 
extracellular compartment to low-gradient cytoplasmic compartment. Its expression dosage has been 
reported to be associated with PDAC progression from low- to high-grade pancreatic preneoplastic 
lesions when compared to normal pancreas [54]. On the other hand, MCT1 and MCT4 are proton-
coupled symport transporters with higher affinity for lactate efflux. These transporters implicated in 
glucose homeostasis are required for cancer cells to neutralise intracellular acidification due to the 
increased glycolytic rate and have been reported to be overexpressed in PDAC. Kong et al. showed 
that inhibition or knockdown of MCT resulted in an inhibited lactate flux. Interestingly, they also 
demonstrated that these transporters are implicated in PDAC cell lines invasiveness, thus 
highlighting once again the implications of glucose homeostasis in pancreatic cancer [56]. 

Importantly, the up-regulation of most of these genes is mediated by PDAC driver mutations on 
K-RAS and TP53. As reviewed by Bryant et al. [57], oncogenic K-RAS enhances the expression of 
many glycolytic enzymes such as GLUT1, Hexokinase 1 and 2 (HK1, HK2) and Lactate 
Dehydrogenase A (LDHA), thus increasing glycolytic flux. This metabolic reprogramming towards 
glycolysis contributes to an enhanced survival of glycolytic PDAC cell lines in the presence of low 
levels of glucose. Moreover, another study based on transcriptome and metabolome analyses showed 
that mutant K-RAS in advanced PDAC mouse models is necessary for an enhanced glucose uptake 
[57]. This study also revealed that aberrant K-RAS is implicated in glucose metabolism intermediates 
channelling into different anabolic pathways, such as the hexosamine biosynthesis pathway (HBP) 
and pentose phosphate pathway (PPP), thus proving that glucose metabolism is necessary to fuel 
anabolic branches of PDAC metabolism to provide the cancer cells with building blocks for its 
increased proliferation demands [58]. Moreover, the enhanced expression of the glycolytic enzymes 
was demonstrated to be related to bad PDAC prognosis, invasiveness and metastases onset [59]. 

4.2. Lipid Metabolism in PDAC 

PDAC tumours are also highly dependent on lipid metabolism [60,61] and, in fact, a high fat diet 
was shown to support tumour growth in murine models [60]. On the one hand, fatty acids (FA) can 
be provided exogenously by the absorption of extracellular lipids (from diet, liver synthesis or 
adipose tissue). For example, cancer-associated adipocytes can provide adipokines and lipids to 
cancer cells [62], increasing pancreatic cancer cell aggressiveness [63]. The exogenous FA uptake 
requires the presence of the transporter CD36 and FA-binding proteins (FABPs). CD36 can also 
influence gemcitabine resistance in PDAC, by regulating anti-apoptosis proteins [64,65]. 
Unsurprisingly, PDAC patients with high CD36 expression have lower overall survival and 
recurrence-free survival rates than patients with low expression. In this context, CD36 could be 
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considered as an unfavourable prognosis factor and the use of anti-CD36 strategies in association 
with conventional chemotherapies could represent a promising therapeutic approach [64,66]. 

On the other hand, pancreatic cancer cells can synthesise de novo lipids through the lipogenesis 
process, producing more than 90% of the triacylglycerol-FA. This process uses the mitochondrial 
citrate produced from the tricarboxylic acid (TCA) cycle fuelled by glucose and/or glutamine as 
carbon sources [67]. Lipogenic enzymes are often overexpressed in PDAC cells; for example Fatty 
Acid Synthase (FASN) is particularly prominent and associated with poor prognosis [61,68–70]. The 
pharmacological inhibition of this enzyme reduces stemness features and gemcitabine resistance in 
pancreatic cancer cells [71]. The produced triacylglycerol molecules are stored in lipid droplets and 
a correlation was established between the accumulation of lipid droplets and tumour progression 
and aggressiveness [72]. Likewise, an elevated lipid synthesis correlates with CSC properties and 
survival in different types of cancer [72]. Thus, cancer cells acquire FA through either lipid uptake or 
de novo lipogenesis, and activate intracellular lipolysis to mobilise the FA stocks. 

FA sustain three requirements of PDAC development and cancer cells in general: cell membrane 
formation, biosynthesis of signalling molecules and lipid-derived messengers, and energy 
production. First of all, lipid synthesis is an important requirement of highly proliferative cancer cells 
to sustain membrane formation [72]. From de novo synthesis, saturated or monounsaturated FA 
modulate membrane fluidity and form more dense membrane layers that may reduce the uptake of 
drugs and contribute to therapy-resistance [73]. Moreover, lipids are implicated in signal 
transduction in two different ways: by building lipid rafts modulating protein recruitments and 
interactions, as well as by formation of lipidic signalling molecules. This is the case for 
phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3], able to activate the protein kinase B/AKT and 
stimulate cell proliferation and survival [73]. Finally, FA represent an important source of energy in 
non-glycolytic tumours, using the mitochondrial β-oxidation (fatty acid oxidation, FAO) to produce 
ATP [72,73]. In that context, Luo et al. demonstrated that the use of etomoxir, an inhibitor of FAO by 
blocking the entrance of FA in the mitochondria via Carnitine Palmitoyl Transferase 1A (CPT1A), can 
restore the sensitivity of pancreatic CSCs to gemcitabine by inducing an energy crisis in those cells 
[74]. These data suggest that CPT1A is an important actor of the cancer metabolism reprogramming 
and could represent an attractive therapeutic target, and highlight how this process is important for 
the cancer cell to supply ATP under energy stress. 

Additionally, PDAC cells are also highly dependent on cholesterol, as it contributes, for 
example, to the formation of lipid rafts, thus modulating the recruitment of key oncogenes receptor 
such as the Epidermal Growth Factor (EGF)-receptor and regulating survival pathways. Cancer cells 
can increase their content through either synthesis (through mevalonate pathway) or endocytosis 
mediated by low-density lipoproteins (LDL) and LDL Receptor (LDLR). In PDAC patients, 
cholesterol biosynthesis is associated with a more differentiated phenotype (classical subtype), while 
high LDLR expression correlates with a higher risk of tumour recurrence. Interestingly, inhibition of 
cholesterol synthesis induced a mesenchymal phenotype [75] while blocking cholesterol uptake via 
the knock-down of LDLR was able to sensitise PDAC cells to chemotherapy [76,77]. 

Taken together, all these reports prove the potential of lipid metabolism targeting in order to 
sensitise PDAC cells to chemotherapy. However, some antitumourigenic effects of specific FA like 
palmitic and stearic acids were reported, and they would be able to trigger apoptosis and inhibit 
proliferation of pancreatic cancer cells [78]. Additionally, more research is required to fully 
understand the crosstalk of the different metabolic pathways. As an example, branched-chain amino 
acids (BCAAs) were able to sustain pancreatic cancer growth by regulating lipid metabolism [79]. 

4.3. Amino acid Metabolism in PDAC 

In their nutrient-deprived environment, PDAC cells also face the lack of amino acids (AAs) and 
use different processes to counteract this phenomenon and support their metabolic needs. First of all, 
several studies demonstrated an association between elevated plasma BCAAs levels and pancreatic 
cancer risk [80,81]. As increased consumption of BCAAs may occur about 10 years before PDAC 
diagnosis, plasma AAs concentrations can be considered as pre-diagnostic and diagnostic markers 
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[82]. Moreover, the significant differences observed between the different PDAC stages make AAs 
good candidates to improve early diagnosis and patient stratification [82]. For example, analysis of 
AAs plasma levels in extended cohorts led to identifying three natural BCAAs with significant 
elevated concentrations: leucine, isoleucine and valine, metabolised via common pathways [80,83]. 

The close microenvironment represents another source of AAs to feed PDAC cells. For example, 
stromal cells, such as pancreatic stellate cells, secrete alanine, which is assimilated by PDAC cells to 
support their glutamine and glucose metabolism [84,85]. In another way, cancer-associated 
fibroblasts (CAFs) present an up-regulated BCAAs catabolism and are able to fuel PDAC cells with 
branched-chain α-ketoacid (BCKA), thanks to their elevated BCAT1 (Branched chain amino acid 
transaminase 1) activity [86]. It was also demonstrated that PDAC cells can directly catabolise 
extracellular collagen to produce proline and fuel the TCA cycle under restrictive nutrient conditions 
[87]. These exchanges between PDAC cells and extracellular milieu (plasma or closed 
microenvironment) are dependent on the expression of transporters such as the L-type Amino Acid 
Transporter 1 (LAT1) or the Cystine/Glutamate Exchanger (SLC7A11/xCT). For that reason, the 
expression of aa transporters is also associated with low prognosis and chemoresistance [88,89]. 

Additionally, indirect sources of AAs also contribute to PDAC development. In general, a 
whole-body protein breakdown occurs in the course of the disease, since PDAC cells are able to 
capture of external proteins, such as albumin, through the macropinocytosis process, which combines 
endocytosis and protein degradation (lysosomal or proteolytic degradation). This extracellular 
protein catabolism represents an important source of AAs, including glutamine, that sustains the 
central carbon metabolism. Indeed, although glucose is the dominant energy fuel for most cancers in 
vivo, it has been suggested that ATP generation relies on glutamine carbons in vitro, leading to 
glutamine addiction. Furthermore, glutamine plays other important roles in PDAC cells: (1) in lipid 
biosynthesis, (2) as a nitrogen donor for AAs and nucleotide biosynthesis, (3) as a carbon substrate 
for the anaplerosis of the mitochondrial TCA cycle, (4) in redox balance by participating in 
glutathione biosynthesis and generating NADPH [60,90]. PDAC cells metabolise glutamine through 
a non-canonical pathway driven by K-RAS or MYC oncogenes in which transaminases, such as 
Aspartate Aminotransferase, are essential [91]. 

5. PDAC Metabolic Signatures 

Although initially it was thought that all PDAC tumours carried similar changes in metabolism, 
the existence of subtypes with specific metabolic requirements has become apparent lately. This 
section summarises and analyses reports that either directly identify metabolic subtypes in PDAC or 
their existence can be inferred from the signatures classifying each subtype. 

Daemen et al. [92] identified three different metabolic subtypes in PDAC cell lines through 
metabolite profiling, further confirmed by transcriptional analysis: “slow-proliferating”, “glycolytic” 
and “lipogenic” (Table 3). The slow-proliferating subtype was defined by reduced cellular 
proliferation and low levels of AAs and carbohydrates. The glycolytic subtype showed high levels of 
gene expression and metabolites from the glycolytic, pentose phosphate and serine pathways. In 
contrast, the lipogenic group was characterised by sets of lipogenic genes and metabolites involved 
in the synthesis of cholesterol and lipids and mitochondrial OXPHOS. Interestingly, while glutamine 
contributed to TCA metabolites in glycolytic cell lines, the lipogenic ones used glucose to replenish 
the TCA cycle, which was accompanied by increased oxygen consumption and mitochondrial 
content. Finally, they created a signature defined by the expression ratio of the glycolytic gene ENO2 
(neuron-specific enolase) and several lipid genes, further validated in 200 non-pancreatic cancer cell 
lines. Interestingly, the authors observed a correlation among their metabolic subtypes and Collison’s 
molecular subtypes [31]: Daemen’s lipogenic subtype is associated with the classical subtype, while 
the glycolytic one is related to the quasi-mesenchymal subtype (Table 4). Accordingly, and in contrast 
to the lipogenic subtype, the glycolytic subtype is very aggressive, grows rapidly, produces 
metastases and generally does not respond to regular chemotherapy [92]. 
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Table 3. Metabolic PDAC signatures. 

Author Type of Study Type and Number of 
PDAC Samples 

Dysregulated Pathways, 
Metabolites and Mutations 

Prognosis 

Daemen et 
al. [92] 

Metabolic 
Transcriptional 

1. Metabolomic analysis 
Cell lines (n = 38) 
2. Transcriptional 

analysis  
Cell lines (n = 38) 

Slow-proliferating: (↓) amino 
acids and carbohydrates levels 

 

Glycolytic: (↑) Metabolites and 
genes in glycolytic, pentose 

phosphate and serine pathways  
Bad 

Lipogenic: (↑) Metabolites and 
genes in cholesterol and de novo 

lipid synthesis 
Good 

Zhao et al. 
[34]  

Transcriptional 

1. Microarray datasets of 
primary tumour samples 

(n = 1268) 
TCGA (n = 172) 

GSE79670 (n = 51) 
TCGC PACA-AU  

(n = 71) 
MTAB-1791 (n = 195)  
ICGCarray (n = 178)  
GSE71729 (n = 145)  
GSE62165 (n = 118)  
GSE62452 (n = 69)  
GSE57495 (n = 63)  
GSE60980 (n = 49) 
GSE77858 (n = 46) 
GSE55643 (n = 45) 
GSE15471 (n = 39) 

L1: (↑) Glycolytic and lipogenic 
genes 

 

L2: (↑) Glycolytic genes Bad 

L3: (↑) Protein metabolism and 
digestive enzyme activity genes 

 

Lomberk et 
al. [35] 

Epigenetic  
Transcriptional 

1. PDXs (n = 24) 
2. Clinical samples 
microarray datasets 
GSE71729 (n = 145) 

ICGC (n = 178) 
TCGA (n= 172) 

Basal: (↑) MYC, glucose 
metabolism genes  

Classical: (↑) PPARs, lipid 
metabolism genes 

Good 

Maurer et al. 
[36] 

Transcriptional  
Computational 

modelling 

1. Primary PDAC 
tumour samples  

(n = 122) 
2. Clinical samples 
microarray datasets 

GSE71729 (UNC)  
(n = 125) 

ICGC (n = 93) 
TCGA (n = 127) 

Classical: (↑) lipogenic pathways 
(cholesterol, retinol and steroid 

hormone biosynthesis) 
Good 

Karasinska 
et al. [93] 

Transcriptional 
Mutational 

1. Transcriptional 
datasets 

TCGA (PAAD-US)  
(n = 61) 

ICGC (PACA-CA)  
(n = 148) 

COMPASS (n = 90) 
PanGen/POG (n = 26) 
2. Mutational datasets 
TCGA (PAAD-US) (n = 

60) 
ICGC (PACA-CA) (n = 

86) 

Quiescent: (↓) metabolic activity  
Glycolytic: Glycolytic genes. K-

RAS and MYC oncogenes 
amplification  

(↓) expression MPC1 and MPC2 

Bad 

Cholesterogenic: (↑) Cholesterol 
biosynthesis genes 

Good 

Mixed: (↑) Glycolytic and 
cholesterol biosynthesis genes 
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Dijk et al. 
[37] 

Transcriptional 

1. Primary PDAC 
tumour samples (n = 90) 

2. Pancreatic cancer 
PDXs cohort (n = 14) 
3. PDAC Cell lines 

cohort (n = 51) 

Epithelial: (↑) lipogenic 
pathways 

Good 

For each classification, type of study, type and number of samples, dysregulated pathways, 
metabolites and mutations and prognosis are described in each column. Up-regulated and down-
regulated pathways are shown as (↑) and (↓), respectively. 

Table 4. Schematic overview of the correspondence of reported molecular and metabolic subtypes in 
PDAC.  

Authors Subtypes 
Collisson et al. [31] Classical Quasi-mesenchymal 

Moffit et al. [33] Classical Basal-like 
Bailey et al. [39] Progenitor Squamous 

Daemen et al. [91] Lipogenic Glycolytic 
Zhao et al. [92] L1 (Glycolytic/lipogenic) L2 (Glycolytic) 

Lomberk et al. [35] Classical (PPAR-dep) Basal (MYC/K-RAS dep) 
Maurer et al. [36] Classical (lipid metabolism) Basal 

Karasinska et al. [34] Cholesterogenic Glycolytic 
Dijk et al. [37] Epithelial (lipid metabolism) Mesenchymal 

Correlated subtypes are grouped in columns. Colours define the subgroups with the best (green) or 
worst (red) prognosis. 

As mentioned before, the L1, L2 and L6 PDAC subtypes described by Zhao et al.[34] were related 
to metabolism (Table 3), while the L1 tumours up-regulated glycolytic and lipogenic genes and the 
L2 subtype enriched glycolysis gene sets and down-regulated lipid metabolism ones. Finally, L6 up-
regulated genes associated with protein metabolism and digestive enzyme activity. We can find 
similarities between Zhao’s and Daemen’s classifications: L2 would correspond to Daemen’s 
glycolytic subtype, associated with poor prognosis in clinical samples, while L1 would constitute a 
mixed group with characteristics of both glycolytic and lipogenic groups (Table 4). 

The work by Lomberk et al. [35] analysing the epigenetic landscape of PDAC samples identified 
super-enhancers and super-enhancer-associated TFs regulating metabolic nodes (Table 3). Indeed, the 
classical subtype is associated with the up-regulation of TFs modulating lipid metabolism (PPAR), 
while MYC, a known regulator of PDAC glycolytic phenotype [47], likely controls the basal subtype. 

Maurer et al. [36] conducted analyses of gene set variance in different published cohorts (TGCA, 
ICGC, UNC and CUMC), applying transcriptional deconvolution to identify the genes specifically 
associated with the epithelial compartment (Table 3). Interestingly, they confirmed the correlation 
between the classical subtype and lipid metabolism in the diverse datasets, highlighting cholesterol 
biosynthesis and retinol metabolism (Table 4). 

A recent study by Karasinska et al. [93] analysed the expression of genes related to glycolysis 
and cholesterol synthesis in clinical samples (Table 3) to establish four metabolic subgroups of PDAC: 
“quiescent”, “glycolytic”, “cholesterogenic” and “mixed”. While the quiescent group had poor 
metabolic activity, the glycolytic and cholesterogenic subtypes enhanced one of these pathways. The 
glycolytic subtype was characterised by the amplification of K-RAS and MYC oncogene and showed 
the lowest expression of the mitochondrial pyruvate carriers MPC1 and MPC2. In addition, the 
glycolytic group showed poor prognosis, whereas the cholesterogenic one reported the longest 
median survival. Lastly, the mixed subtype presented high metabolic activity and enrichment in both 
the glycolytic and cholesterol biosynthesis pathways. These metabolic subtypes were also found in 
nine additional types of cancer. Karasinska et al. compared their metabolic classification with 
previous molecular signatures (Table 4): the quiescent group predominantly belonged to Moffit’s 



J. Clin. Med. 2020, 9, 4128 15 of 23 

 

classical subgroup, and it showed the highest frequency of ADEX and exocrine-like cases, suggesting 
that the quiescent group might be involved in the secretion of digestive enzymes; the glycolytic 
subtype was associated with the basal, squamous and quasi-mesenchymal subgroups, all related 
with the worst outcome; finally, the cholesterogenic group had the lowest proportion of poor 
prognosis signatures, but the highest in Bailey’s pancreatic progenitor subtype. 

Coming back to the classification of Dijk et al. [37], the epithelial subtype showed an enrichment 
in mitochondrial and lipid metabolism pathways such as OXPHOS, terpenoid backbone biosynthesis, 
TCA cycle, steroid biosynthesis and FA degradation (Table 3). This suggests a link between Dijk´s 
epithelial subtype and Daemen´s and Karasinka´s lipogenic subtypes, all of them correlated to the 
classical classification (Table 4). 

As seen for both molecular and metabolic stratification, all these classifications share subtypes 
that are consistently present in PDAC. All stratifications comprise a classical subtype with better 
prognosis corresponding to the lipogenic metabolic subtype. On the other hand, the quasi-
mesenchymal, basal or squamous subtypes, which are aggressive, metastatic and undifferentiated 
tumours, are always related to the glycolytic subtype [32,94]. This strongly suggests an association 
amongst the genetic signature, metabolic profile and tumour aggressiveness. Such a connection could 
reflect the transcriptional program of a driver mutation such as the ones found in K-RAS, which 
induces profound changes at the cellular level, including metabolic reprogramming. However, the 
heterogeneity found in molecular and metabolic subtypes does not necessarily correspond to specific 
mutations, suggesting an extra layer of complexity provided, for example, by the microenvironment. 
Thus, defining metabolic subtypes represents a clear opportunity for patient stratification, 
considering tumour phenotype independently of its mutational background, and opens a new 
avenue for the identification of targeted therapies for each subgroup. 

6. Metabolic Phenotypes and Survival in PDAC 

As mentioned above, we can define at least two metabolic phenotypes consistently represented 
across the different analyses, regardless of the main focus of the studies (molecular or metabolic 
classification): glycolytic and lipogenic subtypes. Interestingly, bioinformatic analyses using TCGA 
and GTEx databases indicate that genes from both metabolic pathways are significantly up-regulated 
in tumoural vs. normal tissues (Figure 1). Amongst the genes included in this analysis, we can find 
representative genes of the metabolic subtypes defined by Daemen et al., Zhao et al. and Karasinska 
et al. in their respective stratification studies [34,92,93]: (1) for the glycolytic subtype, these are ENO2 
(Daemen, Zhao, Karasinska) and lactate dehydrogenase 1 (LDH1) (Karasinska); (2) for the lipogenic 
subtype, it concerns those involved in the triacylglycerol and cholesterol biosynthesis, such as 
diacylglycerol O-acyltransferase 1 (DGAT1), 7-hydrocholesterol reductase (DHCR7), 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (HMGCS1) and mevalonate (diphospho-) decarboxylase (MVD) 
(Daemen, Karasinska). 

Disease-free survival analyses for the representative genes of the metabolic stratification studies 
mentioned above revealed that, except for LDH1 and DHCR7, none of the individual genes had a 
significant impact on patient survival (Figure 2a,b). Surprisingly, although not significant, a trend for 
ENO2 expression associated with better prognosis was observed (Figure 2a). In fact, previous studies 
proved that up-regulated ENO2 contributes to the aggressiveness and poor prognosis of the 
glycolytic subtype in pancreatic cancer [34,92,93]. Importantly, Daemen et al. proposed a gene 
expression ratio based on ENO2 and a lipid signature composed by DGAT1, DHCR7, FDFT1, 
HMGCS1 and MVD to distinguish between glycolytic and lipogenic metabolic phenotypes for PDAC 
and other cancer types. Considering the survival analyses in Figure 2a, we analysed the relationship 
between the enrichment in glycolytic or lipogenic genes and prognosis, using a modified 
glycolytic/lipogenic gene ratio from Daemen’s study that includes LDH1 instead of ENO2. In this line, 
disease-free survival decreased significantly when the ratio LDH1 and any of the lipogenic genes 
increased; thus, when tumours were glycolytic (Figure 2c). Interestingly, the hazard ratio (HR) 
combining LDH1 and MVD or DGAT1 reached values of up to 3.8, facilitating the distinction between 
the two metabolic subtypes and their impact on prognosis. Although further work in this direction 
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is certainly needed, the use of a simplified signature with the metabolic genes that most contribute to 
prognosis could streamline patient stratification based on the phenotypic features of the tumours. 

 

 

(a) (b) 

 
(c) 

Figure 1. Genes from the glycolytic and lipogenic pathways up-regulated in PDAC samples. 
Expression of genes from glycolysis (a) triacylglycerol biosynthesis (b) and cholesterol biosynthesis 
(c) were analysed in cancerous (n = 179) and non-cancerous (n = 171) tissues (public gene expression 
information from PDAC vs. non-tumoural or normal pancreas tissues collected in the TCGA and 
GTEx databases) using GEPIA2 webtool (http://gepia2.cancer-pku.cn). The genes highlighted in the 
PDAC stratification studies from Daemen et al., Zhao et al. and Karasinska et al. are shown in orange. 
Significant differences in gene expression between cancerous and non-cancerous tissues was 
calculated by ANOVA test and is represented by an asterisk (* p ≤ 0.05). 
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Figure 2. Disease-free survival analysis based on the expression of the genes selected for different 
metabolic classification systems. (a). LDH1 and ENO2. (b) MVD, HMGCS1, DHCRT and DGAT1. (c) 
Ratio LDH1 and MVD, HMGCS1, DHCR7 or DGAT1. Comparison of upper and lower population 
quartiles is displayed. Log-rank test, Hazard Ratio (HR) and their corresponding p-values were 
calculated based on the COX model. Analyses were performed using the GEPIA2 web tool 
(http://gepia2.cancer-pku.cn) using public gene expression information collected in the TCGA 
database. 
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7. Conclusions 

PDAC is a heterogeneous disease that can be classified, according to its metabolic needs, into 
glycolytic and lipogenic subtypes with different prognosis. Indeed, the glycolytic subtype would be 
more aggressive and resistant to conventional chemotherapy than the lipogenic one. This metabolic 
stratification correlates with previous molecular classification systems, as they show subtypes 
sharing similar characteristics and prognosis. In this context, classification into metabolic subtypes 
may be better placed for clinical use, since it could provide information on the functional phenotype 
of the tumour, correlating to aggressiveness, chemoresistance and metastatic abilities independently 
from its mutational state. The information collected in this review strongly suggests that patient 
stratification based on metabolic features may bear prognostic value and guide therapeutic decisions 
in the future, identifying a subgroup of patients with poor prognosis that may be eligible to 
personalised treatments designed according to metabolic vulnerabilities. 
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