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Abstract: Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer,
is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies.
Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and
genomic signatures, with partially overlapping subgroups, have been established. Besides
molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound
metabolic reprogramming involving increased glucose and amino acid consumption, as well as
lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of
metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular
subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while
glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic
analyses have demonstrated that the representative genes of each metabolic subtype are up-
regulated in PDAC samples and predict patient survival. This suggests a relationship between the
genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining
metabolic subtypes represents a clear opportunity for patient stratification considering tumour
functional behaviour independently of their mutational background.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid
malignancies. It represents the third cause of cancer-related deaths in industrialised countries today
[1] and it is predicted to become the second by 2030 [2]. Despite progress in the understanding of the
molecular and genetic basis of this disease, five-year survival rates have remained below 10% after
diagnosis and one-year survival occurs in only 28% of cases [3].

The reasons for the poor prognosis of this disease include bad accessibility to the organ, absence
of distinct symptoms and high rate of metastasis, occurring in about 50% of patients [4]. On the other
hand, there are no reliable biomarkers approved for early diagnosis [5].

Currently, the only available curative option for PDAC patients is surgical resection followed by
adjuvant chemotherapy [4]. However, this occurs in a minority of patients, since 80-90% of them are
diagnosed with advanced disease when the tumour is not resectable [6,7]. In addition, the
heterogeneity and plasticity of PDAC tumours lead to chemoresistance [8]. In fact, several phase III
trials of chemotherapy agents or targeted therapies effective in other malignancies have failed to
benefit unselected PDAC populations. In addition, with the exception of the rare subset of mismatch
repair-deficient tumours, checkpoint inhibitors have failed to show efficacy in metastatic patients.

Under such circumstances, the solution possibly lies in early detection and proper classification
of patients [4]. Patient stratification has become an invaluable tool for the clinical management of
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cancer patients, providing diagnostic and prognostic information and, crucially, guiding therapeutic
decisions, especially when targeted therapies for a specific mutation or subgroup are available. In
fact, stratification had a key role improving survival rates in diseases such as breast cancer. However,
patient stratification based on histomorphological or molecular features in PDAC has proved
challenging, severely delaying the identification of such targeted therapies. This, together with the
undruggable nature of mutated K-RAS (although clinical trials are underway to inhibit the mutation
K-RASG12€), limits PDAC treatment to ineffective conventional chemotherapy. Genomic studies have
revealed subtypes of PDAC based on their molecular features, but diverse studies have reported
different classification systems incompletely overlapping. Interestingly, increasing efforts are being
made in different directions. In fact, recent data suggest that PDAC tumours could also be classified
attending to their metabolic phenotype.

In this review, we describe and analyse the correspondence of most of the published molecular
and metabolic signatures of PDAC and propose a modified metabolic signature that could stratify
patients according to metabolic needs independently of the mutational load.

2. PDAC Mutational Profile

Many studies have been conducted on PDAC samples to determine molecular aberrations at
DNA, RNA, protein and epigenetic levels [9]. In general terms, mutations in individual genes
comprise 10 main pathways: DNA damage repair (TP53 or BRCA2), cell cycle regulation (Cyclin-
Dependent Kinase Inhibitor 2A, CDKN2A), Transforming growth factor-beta (TGF-p) pathway
(SMAD4), NOTCH and WNT signalling, chromatin regulation, Extracellular Signalling Regulated
Kinases (ERK)-Mitogen-Activated Protein Kinases (MAPK) signalling (K-RAS, B-RAF), axonal
guidance and RNA processing [10,11].

Altogether, K-RAS gain of function, accounting for up to 90% of PDAC cases, and inactivation
of the tumour suppressor genes p16/CDKN2A, SMAD4 and TP53 contribute to PDAC formation,
maintenance, progression and, ultimately, metastasis onset. Occasionally, the mutations occur in
other components of the pathway in which they are involved [9,12,13]. In addition, genome-wide and
exome-wide analyses have identified a long list of less frequent alterations in genes related to axon
orientation or DNA damage repair, such as BRCAI or BRCA2 [12,14,15]. Moreover, most PDACs
show complex patterns of chromosomal rearrangement [16,17].

Some findings have suggested a linear pathway of evolution from normal cells to PDAC cells,
in which not all mutations occur at the same time. Telomere shortening is considered the trigger of
pancreatic tumorigenesis by inducing genetic instability, coupled with a mutation in the K-RAS gene.
Surviving cells are then altered by loss of CDKN2A function. In third place, the tumour suppressor
genes TP53 and SMAD4 are inactivated, leading to intermediate stages called pancreatic intraductal
neoplasias (PanINs) and, ultimately, full-blown PDAC [10,18]. However, it seems that in some cases,
CDKN2A, TP53 and SMAD4 mutations can occur in a single event, which is called “punctuated
equilibrium” [11].

2.1. K-RAS

K-RAS is one of the three mutationally activated forms of the Ras protein, together with H-RAS
and N-RAS. It is the most represented one among all cancers bearing RAS mutations, and the one
exclusively mutated in PDAC. Moreover, it is known to be the main driver mutation for this disease,
since K-RAS is mutated in >90% of the cases, thus making PDAC the most RAS-addicted of all cancer
types [19]. However, K-RAS activation alone is not sufficient for PDAC development [20,21].

Ras proteins are small GTPases that act as signalling switches regulating cell proliferation,
survival, differentiation and inflammation, by activating the MAPK module. In a normal scenario,
Ras is found in its inactive form coupled to guanosine diphosphate (GDP) and, upon activation by
diverse extracellular stimuli, Ras becomes active by coupling guanosine triphosphate (GTP), thus
switching on downstream effectors such as ERKs, Jun Amino-Terminal Kinases (JNKs), Stress-
Activated Protein Kinases (p38/SAPKs) and PI3K/PDK1/AKT, amongst others [22,23]. In PDAC and
other cancers bearing oncogenic K-RAS mutations, this protein is constitutively active in a GTP-
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bound state. PDAC-associated K-RAS alterations mainly harbour missense mutations that depend on
allele dosage for tumorigenesis and metastasis onset, and contribute to PDAC evolution from PanINs
to final cancer formation with the loss of other key PDAC-driving players [24].

2.2. p16/CDKN2A

Along the evolutionary course of PDAC onset, K-RAS mutation is followed by the occurrence of
genetic alterations in the tumour suppressor gene CDKN2A in 95% of PDAC patients [24]. Tumour
suppressor genes are important to restrain aberrant cell proliferation in the context of oncogenic
signalling and, to that end, these genes rely on different strategies such as cell cycle arrest, apoptosis
or senescence induction. Specifically, the gene CDKN2A, encoding for P16INK4a and P14RF proteins,
shows a dual mechanism: P16INK4a inhibits Cyclin Dependent Kinases (CDK) 2 and 4, thus
preventing cell cycle to progress into S-phase, while P14RF triggers P53 by inhibiting its inhibitor,
Mouse double minute 2 homolog (MDM?2), thereby inducing growth arrest and apoptosis [25].

2.3. TP53

P53, the protein encoded by the TP53 gene, is known to be the “genome guardian” due to its
essential role upon chromatin damage. Amongst its main functions, we find cell cycle blockade and
activation of DNA repair enzymes. Ultimately, P53 may lead the cell to a senescence state and/or
apoptosis when DNA damage is no longer reparable. Genetic inactivation of TP53 is present in up to
75% of all PDAC cases and appear in advanced PanINs after loss of CDKN2A. Loss of functional P53
leads to an uncontrolled state of proliferation [25]. Importantly, mutant P53 may contribute to
metastatic progression of K-RAS-driving PDAC-bearing mice, highlighting a novel role of this
transcription factor in late stages of PDAC beyond the malignant transformation of PanINs into
PDAC [26,27].

2.4. SMAD4

SMAD4 serves as the central mediator of TGF-f3 pathway and it is known to be the fourth and,
together with TP53, ultimate driver for PDAC initiation [28]. However, the role of SMAD4 in the
pathogenesis of PDAC is complex and its final results are context-dependent. On the one hand, the
TGF-B pathway is a well-accepted epithelial-to-mesenchymal transition (EMT) inducer [29], and also
in PDAC [25], thus highlighting its pro-tumorigenic potential. Conversely, Smad4 signalling in the
KPC (LSL-KrasG12D/+LSL-Trp53R172H/+;Pdx-1-Cre) mouse PDAC model mediates a tumour
suppressive process known as “lethal EMT”. In this scenario, Smad4 triggers apoptosis through
repression of the gastrointestinal lineage-master regulator KlIf5 and, consequently, inhibits PDAC
progression induced by Klf5/Sox4. Consequently, the loss of SMAD4 tumour suppressive function
may contribute to pancreatic oncogenesis through the TFG-3 canonical pathway [30].

3. PDAC Molecular Signatures

Besides purely mutational analyses, a considerable number of genomic and transcriptomic
studies in patient samples have identified the existence of PDAC subtypes with prognostic and
biological relevance, as detailed below.

Collisson et al. [31] reported the first exhaustive transcriptomic analysis on clinical samples, and
based their classification on gene expression and molecular profiling. PDAC tissues were classified
into “classical”, “quasi-mesenchymal” and “exocrine-like” (Table 1), with different prognoses and
responses to selected therapies. The classical subtype showed high expression of epithelial and
adhesion-associated genes, such as the transcription factor GATA6, and favourable prognosis
regarding survival after PDAC resection. On the other hand, the quasi-mesenchymal subtype
exhibited high expression of mesenchymal-associated genes, was relatively less dependent on K-RAS
than the classical one, and, importantly, was associated with poor prognosis. Finally, the exocrine-
like subtype revealed high expression of digestive exocrine enzyme genes. However, the last subtype
was not found in cancer cell lines, raising concerns about its specificity [32].
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Table 1. Molecular Pancreatic Ductal Adenocarcinoma (PDAC) signatures.
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Author

Collison et al. [31]

Moffit et al. [33]

Bailey et al. [10]

Type of Study

Transcriptional

Transcriptional

Mutational
Transcriptional

Type and Number of PDAC Dysregulated Pathways and

Samples
1. Clinical samples
microarray datasets
Microdissected (1 = 27)
GSE15471 (n = 36)
GSE11838 (n =107)
GSE16515 (n=52)
E-MEXP-950 (n = 50)
2. Validation:
Mouse cell lines (1 = 15)
Human cell lines (1 = 19)

1. Microarray data
Primary tumour (1 = 145)
Metastatic tumour (n = 61)

Cell lines (n=17)
Pancreas normal samples (1
=46)

Distant site adjacent samples
(n=88)

2. Validation
Primary tumours (n =15)
PDXs (n=37)

Cell lines (1 =3)

CAF lines (n = 6)

Primary PDAC tumour
samples and rare acinar cell
carcinoma (n = 382)
PDAC exomes (n =74)

Mutations
Classical: (1) Adhesion-
associated genes (GATA®).
More K-RAS-dependent
Quasi-mesenchymal: (1)
Mesenchymal associated
genes

Exocrine: (1) Digestive
exocrine enzyme genes

Classical: Classical Collison
((1) adhesion-associated
genes (GATA6)) and SMAD4
Basal: (1) Genes also highly
expressed in basal tumours
in bladder and breast cancer
Normal stroma: (1)
Pancreatic stellate cells,
smooth muscle actin,
vimentin and desmin
markers
Activated stroma: (1)
Macrophages, tumour
promotion and fibroblast
activation-associated genes
Squamous:
Hypermethylation and ()
pancreatic endodermal cell
fate genes. TP53, KDM6A
and TP63AN
Pancreatic progenitor: (1)
Pancreatic early
development genes (PDX1)
ADEX: (1) K-RAS activation
and pancreatic late
development and
differentiation genes

Outcome

Good

Bad

Good

Bad

Good

Bad

Bad

Good
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Zhao et al. [34]

Lomberk et al. [35]

Maurer et al. [36]

Dijk et al. [37]

Transcriptional (metanalysis)

Epigenetic

Transcriptional
Computational modelling

Transcriptional

1. Microarray datasets of
PDAC primary tumour

samples (1 = 1268)
TCGA (n=172)
GSE79670 (n = 51)

TCGC PACA-AU (1 ="71)

MTAB-1791 (n = 195)
ICGC array (n=178)
GSE71729 (n = 145)
GSE62165 (1 =118)
GSE62452 (n = 69)
GSE57495 (n = 63)
GSE60980 (1 = 49)
GSE77858 (n = 46)
GSE55643 (n = 45)
GSE15471 (n =39)
1. PDXs (n =24)

2. Clinical samples
microarray datasets
GSE71729 (n = 145)
ICGC (n=178)
TCGA (n=172)

1. Primary PDAC tumour

samples (1 =122)
2. Clinical samples
microarray datasets

GSE71729 (UNC) (n =125)

ICGC (n=93)
TCGA (n=127)

1. Primary PDAC tumour

samples (1 =90)

2. Pancreatic cancer PDXs

cohort (n =14)

3. PDAC Cell lines cohort (1

=51)

Immunogenic: (1) Immune
suppression and strong
immune infiltration
L1: (1) Metabolic genes
L2: (1) Metabolic, cell
proliferation and epithelium
genes (CDKN2A)

L3: (1) Collagen and ECM
associated genes
L4: (1) Immune profile
L5: (1) Neuroendocrine and
insulin related pathways

Lé: (1) Metabolic and
digestive enzyme genes

Bad

Good
Good

Classical: (1) TFs involved in
pancreatic development,
metabolic regulators and Ras
signalling
Basal: (1) TF proliferative
and transcription nodes
Classical: Classical Moffit
Basal: Basal Moffit
Immune-rich: (1) immune
and interleukin levels

ECM-rich: (1) matrix
extracellular pathways

Epithelial: (1) MYC,
mitochondrial components
and ribosome signature
Mesenchymal: (1) K-RAS,
pathways related to EMT,
stromal signalling and TGF-3
Compound pancreatic:
Similar to the mesenchymal
subtype and (1) endocrine
pathways

Good

Bad

Good
Bad

Good

Bad

Good

Bad

Good
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Classical A/B: (1) SMAD4

Laser ca{)tu;e mllcr:)dlisected and GATAG alterations Good
, Samples Irom 1ate-stage  pasal-like A/B: (1) EMT and
Whole genome sequencing PDAC
Chan-Seng-Yue et al. [38] . TGF-f pathways, loss of
Transcriptional 1. WGS (n =314) . Bad
CDKN2A, TP53 mutations, K-
2. Bulk RNAseq (1 =248) .
3. Single-cell RNAseq (1 =15) RAS imbalance
i 1 Hybrid Mid
Graded types between
Nicolle et al. [39] Transcriptional PDXs (n="76) classical and basal based on Grade dependant

tumour differentiation

For each classification, type of study, type and number of samples, dysregulated pathways and mutations and prognosis are described in each column. Up-regulated
and down-regulated pathways are shown as (1) and (), respectively. CAF, Cancer-Associated Fibroblast; EMT, Epithelial-to-Mesenchymal Transition; PDAC,
Pancreatic Ductal Adenocarcinoma; PDX, Patient-Derived Xenograft; TF, Transcription Factor; WGS, Whole Genome Sequencing.
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Moffitt et al. [33] performed transcriptional analysis to classify PDAC tumours into two subtypes
within two different tissues (Table 1): tumour and stroma. Based on tumour cells, PDAC samples
were classified into “classical” and “basal” subtypes. The classical group was enriched in SMAD4
and GATA6, while the basal subtype was molecularly similar to basal tumours in bladder and breast
cancer. Although classical tumours showed better prognosis, patients with basal tumours responded
better to adjuvant therapy. On the other hand, the stroma was divided into “normal” and “activated”
subtypes. The normal stromal group showed high levels of markers for pancreatic stellate cells,
smooth muscle actin, vimentin and desmin. However, the activated stromal subtype was defined by
a complex set of genes associated with macrophages, tumour promotion and fibroblast activation;
this described an activated pro-tumorigenic inflammatory stromal response with poor prognosis.
Comparing their signature with Collisson’s [31], Moffitt et al. found an overlap between both classical
subtypes, while genes in the quasi-mesenchymal subtype seemed a mixed selection of genes from
basal and stromal subtypes (Table 2) [33].

Table 2. Molecular subtypes corresponding to PDAC classification.

Authors Common Subtypes Others
Collisson et al. [31] Classical Quasi- EXO,C rmes
mesenchymal like
1 tivat
Moffit et al. [33] Classical Basal-like Normal and activated
stroma
Bailey et al. [39] Progenitor Squamous ADEX Immunogenic
Zhao et al. [34] L1 L2 L6 L3, L4 and L5
Lomberk et al. [35] Classical Basal
Maurer et al. [36] Classical Basal Immune-r;(it?hand ECM-
Dijk et al. [37] Epithelial Mesenchymal Secretory Compound pancreatic
Chan-Seng-Yue et Classical (A, B) Basal-like (A, B) Hybrid
al. [38]
Nicolle et al. [39] From Classical to Basal

Correlated subtypes are grouped in columns. Colours define the subgroups with the best (green) or
worst (red) prognosis. ECM, Extracellular Matrix.

Later, Bailey et al. [10] defined new molecular subtypes of PDAC based on comprehensive
integrated genomic analysis and RNA expression profiles: “squamous”, “pancreatic progenitor”,
“aberrantly differentiated endocrine exocrine” (ADEX) and “immunogenic” (Table 1). The squamous
subtype was linked to hypermethylation and down-regulation of genes determining endodermal
identity in pancreas, with poor prognosis in patients. It was also enriched in TP53 and KDM6A
mutations and up-regulation of the transcriptional network TP63AN. PDAC progenitor-type
tumours expressed genes involved in early development of the pancreas, such as PDX1. The ADEX
class overexpressed transcriptional pathways present in K-RAS activation and in late stages of
pancreatic development and differentiation. Lastly, the immunogenic subtype had pancreatic
progenitor features, but it was related to acquired immune suppression pathways (CTLA4 and PD-
1) and strong immune infiltration (B and T cells). When they compared their classification with earlier
studies, three of their classes directly overlapped with Collisson’s groups [31]: Collisson’s classical,
quasi-mesenchymal and exocrine-like subtypes matched Bailey’s pancreatic progenitor, squamous
and ADEX groups, respectively (Table 2). In addition, 50% of the squamous subtype tumours were
included in Moffitt’s basal subgroup [33].

In 2018, Zhao et al. [34] conducted a retrospective meta-analysis of complete transcriptome data
from patients with PDAC (Table 1). They obtained six different subtypes grouped in tumour- (L1, L2
and L6) and stromal-specific (L3, L4 and L5) subtypes. L1, L2 and L6 were all enriched in metabolic
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genes, as detailed in Section 5. Besides metabolism, the subtypes were differentially enriched in other
routes: L2 was related to cell proliferation and epithelium genes, such as CDKN2A; L3 had increased
regulation of collagen and extracellular matrix (ECM)-associated genes; L4 had an immune profile;
L5 was involved in neuroendocrine and insulin-related pathways; L6 showed activity of digestive
enzymes. Each expression profile was related to clinical data: epithelium and proliferation in L2
showed the poorest prognosis, immune and neuroendocrine profiles at L4 and L5 showed the best
outcomes. Considering the above stratifications of PDAC, Zhao et al. found that L1 and L6 were very
similar to the classical Moffit's subtype, while L2 approached their basal subtype (Table 2). L1, L2
and L6 were close to the activated subtype. In Bailey’s dataset, L1 and L4 approximated the
immunogenic subtype, L2 the squamous, L3 the pancreatic progenitor and L6 resembled the ADEX
subtype. Finally, L1 and L3 were similar to Collison’s classical subtype, L2 approached the quasi-
mesenchymal and L6 related to the exocrine-like one.

Lomberk et al. [35] identified epigenomic landscapes of PDAC subtypes by performing an
integrative analysis of genome-wide Chromatin Immunoprecipitation-sequencing (ChIP-seq) on
multiple histone modifications, as well as RN A-sequencing (RNA-seq) and DNA methylation studies
(Table 1). They reported two subtypes: “classical” and “basal”’, which correlated with clinical
parameters. Super enhancer mapping coupled with Transcription Factor (TF) binding motif and up-
regulation analysis showed that classical tumours were related to TFs involved in development of
the pancreas, metabolic regulators and K-RAS signalling, while basal tumours correlated with
proliferative and EMT TF nodes. The basal samples were linked to a more aggressive phenotype than
the classical ones.

Maurer et al. [36] used Laser Capture Microdissection (LCM) to separate stromal and epithelial
compartments of PDAC bulk tumour samples, and confirmed using machine learning techniques
that stromal contamination may interfere with PDAC classification (Table 1). In addition, they
described two epithelial subtypes of PDAC that correlated with the classical and basal subtypes from
Moffit et al., with the basal subtype having a poorer prognosis than the classical (Table 2). Moreover,
they identified two stromal subtypes, an “immune-rich” group characterised by high immune and
interleukin levels, and an “ECM-rich” group, associated with extracellular matrix pathways. The
ECM-rich subtype appeared to have decreased survival compared with the immune-rich one. Finally,
they found an association of the epithelial and stromal subtypes in which the basal epithelium
subtype and the ECM-rich stroma were linked.

In 2020, Dijk et al. [37] conducted an unsupervised consensus clustering and identified four
molecular subtypes: “secretory”, “epithelial”, “compound pancreatic” and “mesenchymal” (Table 1).
The secretory subtype showed enrichment in endocrine and exocrine pathways of the pancreas.
Tumours of the epithelial subtype were characterised by up-regulation of the MYC oncogene and
high expression of mitochondrial components and ribosome signature. The mesenchymal subtype
had high levels of K-RAS transcription and was enriched in pathways related to EMT, stromal
signalling and TGF-3. The compound pancreatic subtype presented similar characteristics to the
mesenchymal subtype but, in addition, was enriched in endocrine functions. The secretory and
mesenchymal subtypes presented worse prognosis than the epithelial and compound pancreatic
ones. Dijk et al. found an interconnection between these subtypes and those described by Collison,
Bailey and Moffit (Table 2). For example, the secretory subtype correlated significantly with
Collison’s exocrine-like, Bailey’s ADEX, and Moffit's basal subtypes. The epithelial subtype shared
characteristics with the Collison’s and Moffit’s classical subtypes, but also with the Bailey’s pancreatic
progenitor and squamous subtypes. The compound pancreatic group was similar to Collison’s
exocrine, Bailey’s ADEX and Moffit’s classical. Lastly, the mesenchymal subtype correlated with
Collison’s quasi-mesenchymal, Bailey’s squamous and Moffit’s basal.

Chan-Seng-Yue et al. [38] performed whole genome sequencing and both bulk and single-cell
RNAseq analyses on laser capture microdissected tumours from more than 200 late-stage patients.
They identified three major subtypes: “classical”, “basal-like” and “hybrid” (Table 1). Although the
classical and basal-like subtypes were fairly overlapped with the previous classifications by Moffit,
Bailey and Collison (Table 2), they found that these subtypes could be subdivided into A and B
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subclasses with differences in their response to chemotherapy, aggressiveness and disease stage. For
example, basal-like A tumours are highly chemoresistant and feature a high squamous signature
enriched in metastatic tumours, while basal-like B tumours correspond to a low squamous signature
present in resectable tumours. Importantly, they found that classical and basal-like programs co-exist
within a tumour and demonstrated that molecular subtypes are linked to a specific copy number
aberrations in genes such as mutant K-RAS (basal-like subtype) and GATAG6 (classical subtype).

Finally, Nicolle et al. [39] proposed a molecular gradient classification to stablish a PDAC
transcriptomic signature that could better represent the existence of intermediate cellular phenotypes
between classical and basal-like subtypes (Table 1). In this study, they graded Patient-Derived
Xenografts (PDXs) according to different molecular levels of differentiation and confirmed that the
higher expression of genes linked to the classical PDAC subtype (GATA6) was correlated with
increased differentiation of PDX samples, while lower expression of genes was linked to the basal-
like subtype. They also found that the higher the differentiation of the tumour, the better the
prognosis and response to chemotherapy.

Interestingly, although partial overlap amongst the different signatures and molecular subtypes
can be found in these studies, recent works using single-cell transcriptomics demonstrated that
several subtypes can co-exist within a tumour [38,40], further underlining the high level of
heterogeneity present in PDAC tumours. Undoubtedly, more efforts in this direction are required to
further dissect the complexity of these tumours, as well as to decipher the interplay of the different
subpopulations during disease progression.

4. Metabolic Reprogramming in PDAC

At the histological level, one of the most notable characteristics of PDAC is its dense stroma,
being up to 90% of the tumour volume. Its main features are extensive fibrosis, lack of vascularisation,
hypoxia and immune infiltration. Hypoxia is associated with increased cancer cell proliferation,
survival, EMT, invasiveness and metastasis [41].

The lack of vascularisation not only causes hypoxia in the tumour, but also causes metabolic
stress due to nutrient deprivation. As a result, tumour cells undergo the so-called “metabolic
reprogramming”, an updated hallmark of cancer [32,42]. Cancer cells increase nutrient acquisition
along with enhanced flow through anabolic pathways. This leads to increased glycolysis and glucose
transport, high glutamine consumption, lipid and amino acid biosynthesis and maintenance of redox
homeostasis. In addition, recycling of cellular components also occurs through autophagy, which
degrades macromolecular complexes and organelles into individual metabolites [41,43—45].

4.1. Warburg Phenotype

The major example of metabolic reprogramming is higher glucose consumption. The role of
glucose metabolism in cancer was well defined by Otto Warburg back in the late 1920s, leading to be
considered one of the hallmarks of cancer [46]. Glycolytic flow is precisely controlled to fulfil rapid
proliferative and synthetic needs. Unlike normal cells, tumour cells have high levels of glycolysis, even
in the presence of oxygen and reduced mitochondrial function, leading to a state called “aerobic
glycolysis”, also called the “Warburg effect”. On the other hand, the “reverse Warburg effect” describes
a two-compartment model in which cancer cells induce aerobic glycolysis in the stromal cells, whose
glycolysis end-products are transferred to the cancer cells to feed mitochondrial oxidative
phosphorylation (OXPHOS). This allows tumours to respond to variations in nutrient availability and
to optimise cell proliferation and growth [47]. Interestingly, this two-compartment model can also be
applied considering the functional heterogeneity of cancer cells in PDAC: glycolytic differentiated
tumour cells could provide substrates to oxidative cancer stem cells (CSCs) [48].

A hypothesis for metabolic rewiring towards enhanced glycolysis over the reduction of
mitochondrial oxidation as a source of ATP in PDAC is the presence of a dense desmoplastic stroma,
which basically impedes neovascularisation. This creates a hypoxic microenvironment in which oxygen
and nutrients are limited [49]. This state creates a positive feedback loop by which, on the one hand,
pancreatic cancer cells feel a selective pressure under the hypoxic and nutrient shortage where only the
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most aggressive populations will remain. On the other hand, under such stress-driven situations,
pancreatic cancer cells are forced to modify their metabolism in order to cope with their bioenergetic
demands for PDAC progression, expansion and dissemination through the blood vessels towards less
scarce environments [50]. Indeed, a recent study demonstrated that glycolysis and hypoxia signatures
correlate in PDAC and that Prolyl 4-Hydroxylase subunit Alpha 1 (P4HA1), a critical enzyme involved
in collagen synthesis, controls glycolysis through HIF1a stabilisation [51]. Moreover, gene expression
arrays of metastatic PDAC revealed a glycolysis-based signature characterised by increased expression
of many glycolytic enzymes [52], highlighting the importance of glycolytic metabolism in PDAC
progression. In fact, Liu et al. recently demonstrated that the EMT-related gene SNAIL was able to
induce a migratory phenotype in PDAC cell lines by promoting mesenchymal-related genes expression
along with enhanced glucose uptake and lactate production [53].

Overall, the glycolytic state is characterised by an increased expression of glycolytic enzymes
and glucose and lactate transporters, such as Glucose Transporter 1 (GLUT1), and Monocarboxylate
Transporters 1 and 4 (MCT1, MCT4) [54,55]. Specifically, the overexpression of these membrane
transporters leads to an enhanced glucose scavenging from the hypovascularised tumour
microenvironment, which results in increased glucose availability in the cancer cell as well as a better
balance of the glucose pathway in order to keep glycolysis at high rate. On the one hand, GLUT1 is
an ATP-independent glucose transporter that enables glucose transference from a high-gradient
extracellular compartment to low-gradient cytoplasmic compartment. Its expression dosage has been
reported to be associated with PDAC progression from low- to high-grade pancreatic preneoplastic
lesions when compared to normal pancreas [54]. On the other hand, MCT1 and MCT4 are proton-
coupled symport transporters with higher affinity for lactate efflux. These transporters implicated in
glucose homeostasis are required for cancer cells to neutralise intracellular acidification due to the
increased glycolytic rate and have been reported to be overexpressed in PDAC. Kong et al. showed
that inhibition or knockdown of MCT resulted in an inhibited lactate flux. Interestingly, they also
demonstrated that these transporters are implicated in PDAC cell lines invasiveness, thus
highlighting once again the implications of glucose homeostasis in pancreatic cancer [56].

Importantly, the up-regulation of most of these genes is mediated by PDAC driver mutations on
K-RAS and TP53. As reviewed by Bryant et al. [57], oncogenic K-RAS enhances the expression of
many glycolytic enzymes such as GLUTI1, Hexokinase 1 and 2 (HK1, HK2) and Lactate
Dehydrogenase A (LDHA), thus increasing glycolytic flux. This metabolic reprogramming towards
glycolysis contributes to an enhanced survival of glycolytic PDAC cell lines in the presence of low
levels of glucose. Moreover, another study based on transcriptome and metabolome analyses showed
that mutant K-RAS in advanced PDAC mouse models is necessary for an enhanced glucose uptake
[57]. This study also revealed that aberrant K-RAS is implicated in glucose metabolism intermediates
channelling into different anabolic pathways, such as the hexosamine biosynthesis pathway (HBP)
and pentose phosphate pathway (PPP), thus proving that glucose metabolism is necessary to fuel
anabolic branches of PDAC metabolism to provide the cancer cells with building blocks for its
increased proliferation demands [58]. Moreover, the enhanced expression of the glycolytic enzymes
was demonstrated to be related to bad PDAC prognosis, invasiveness and metastases onset [59].

4.2. Lipid Metabolism in PDAC

PDAC tumours are also highly dependent on lipid metabolism [60,61] and, in fact, a high fat diet
was shown to support tumour growth in murine models [60]. On the one hand, fatty acids (FA) can
be provided exogenously by the absorption of extracellular lipids (from diet, liver synthesis or
adipose tissue). For example, cancer-associated adipocytes can provide adipokines and lipids to
cancer cells [62], increasing pancreatic cancer cell aggressiveness [63]. The exogenous FA uptake
requires the presence of the transporter CD36 and FA-binding proteins (FABPs). CD36 can also
influence gemcitabine resistance in PDAC, by regulating anti-apoptosis proteins [64,65].
Unsurprisingly, PDAC patients with high CD36 expression have lower overall survival and
recurrence-free survival rates than patients with low expression. In this context, CD36 could be
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considered as an unfavourable prognosis factor and the use of anti-CD36 strategies in association
with conventional chemotherapies could represent a promising therapeutic approach [64,66].

On the other hand, pancreatic cancer cells can synthesise de novo lipids through the lipogenesis
process, producing more than 90% of the triacylglycerol-FA. This process uses the mitochondrial
citrate produced from the tricarboxylic acid (TCA) cycle fuelled by glucose and/or glutamine as
carbon sources [67]. Lipogenic enzymes are often overexpressed in PDAC cells; for example Fatty
Acid Synthase (FASN) is particularly prominent and associated with poor prognosis [61,68-70]. The
pharmacological inhibition of this enzyme reduces stemness features and gemcitabine resistance in
pancreatic cancer cells [71]. The produced triacylglycerol molecules are stored in lipid droplets and
a correlation was established between the accumulation of lipid droplets and tumour progression
and aggressiveness [72]. Likewise, an elevated lipid synthesis correlates with CSC properties and
survival in different types of cancer [72]. Thus, cancer cells acquire FA through either lipid uptake or
de novo lipogenesis, and activate intracellular lipolysis to mobilise the FA stocks.

FA sustain three requirements of PDAC development and cancer cells in general: cell membrane
formation, biosynthesis of signalling molecules and lipid-derived messengers, and energy
production. First of all, lipid synthesis is an important requirement of highly proliferative cancer cells
to sustain membrane formation [72]. From de novo synthesis, saturated or monounsaturated FA
modulate membrane fluidity and form more dense membrane layers that may reduce the uptake of
drugs and contribute to therapy-resistance [73]. Moreover, lipids are implicated in signal
transduction in two different ways: by building lipid rafts modulating protein recruitments and
interactions, as well as by formation of lipidic signalling molecules. This is the case for
phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3], able to activate the protein kinase B/AKT and
stimulate cell proliferation and survival [73]. Finally, FA represent an important source of energy in
non-glycolytic tumours, using the mitochondrial 3-oxidation (fatty acid oxidation, FAO) to produce
ATP [72,73]. In that context, Luo et al. demonstrated that the use of etomoxir, an inhibitor of FAO by
blocking the entrance of FA in the mitochondria via Carnitine Palmitoyl Transferase 1A (CPT1A), can
restore the sensitivity of pancreatic CSCs to gemcitabine by inducing an energy crisis in those cells
[74]. These data suggest that CPT1A is an important actor of the cancer metabolism reprogramming
and could represent an attractive therapeutic target, and highlight how this process is important for
the cancer cell to supply ATP under energy stress.

Additionally, PDAC cells are also highly dependent on cholesterol, as it contributes, for
example, to the formation of lipid rafts, thus modulating the recruitment of key oncogenes receptor
such as the Epidermal Growth Factor (EGF)-receptor and regulating survival pathways. Cancer cells
can increase their content through either synthesis (through mevalonate pathway) or endocytosis
mediated by low-density lipoproteins (LDL) and LDL Receptor (LDLR). In PDAC patients,
cholesterol biosynthesis is associated with a more differentiated phenotype (classical subtype), while
high LDLR expression correlates with a higher risk of tumour recurrence. Interestingly, inhibition of
cholesterol synthesis induced a mesenchymal phenotype [75] while blocking cholesterol uptake via
the knock-down of LDLR was able to sensitise PDAC cells to chemotherapy [76,77].

Taken together, all these reports prove the potential of lipid metabolism targeting in order to
sensitise PDAC cells to chemotherapy. However, some antitumourigenic effects of specific FA like
palmitic and stearic acids were reported, and they would be able to trigger apoptosis and inhibit
proliferation of pancreatic cancer cells [78]. Additionally, more research is required to fully
understand the crosstalk of the different metabolic pathways. As an example, branched-chain amino
acids (BCAAs) were able to sustain pancreatic cancer growth by regulating lipid metabolism [79].

4.3. Amino acid Metabolism in PDAC

In their nutrient-deprived environment, PDAC cells also face the lack of amino acids (AAs) and
use different processes to counteract this phenomenon and support their metabolic needs. First of all,
several studies demonstrated an association between elevated plasma BCAAs levels and pancreatic
cancer risk [80,81]. As increased consumption of BCAAs may occur about 10 years before PDAC
diagnosis, plasma AAs concentrations can be considered as pre-diagnostic and diagnostic markers
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[82]. Moreover, the significant differences observed between the different PDAC stages make AAs
good candidates to improve early diagnosis and patient stratification [82]. For example, analysis of
AAs plasma levels in extended cohorts led to identifying three natural BCAAs with significant
elevated concentrations: leucine, isoleucine and valine, metabolised via common pathways [80,83].

The close microenvironment represents another source of AAs to feed PDAC cells. For example,
stromal cells, such as pancreatic stellate cells, secrete alanine, which is assimilated by PDAC cells to
support their glutamine and glucose metabolism [84,85]. In another way, cancer-associated
fibroblasts (CAFs) present an up-regulated BCAAs catabolism and are able to fuel PDAC cells with
branched-chain a-ketoacid (BCKA), thanks to their elevated BCAT1 (Branched chain amino acid
transaminase 1) activity [86]. It was also demonstrated that PDAC cells can directly catabolise
extracellular collagen to produce proline and fuel the TCA cycle under restrictive nutrient conditions
[87]. These exchanges between PDAC cells and extracellular milieu (plasma or closed
microenvironment) are dependent on the expression of transporters such as the L-type Amino Acid
Transporter 1 (LAT1) or the Cystine/Glutamate Exchanger (SLC7A11/xCT). For that reason, the
expression of aa transporters is also associated with low prognosis and chemoresistance [88,89].

Additionally, indirect sources of AAs also contribute to PDAC development. In general, a
whole-body protein breakdown occurs in the course of the disease, since PDAC cells are able to
capture of external proteins, such as albumin, through the macropinocytosis process, which combines
endocytosis and protein degradation (lysosomal or proteolytic degradation). This extracellular
protein catabolism represents an important source of AAs, including glutamine, that sustains the
central carbon metabolism. Indeed, although glucose is the dominant energy fuel for most cancers in
vivo, it has been suggested that ATP generation relies on glutamine carbons in vitro, leading to
glutamine addiction. Furthermore, glutamine plays other important roles in PDAC cells: (1) in lipid
biosynthesis, (2) as a nitrogen donor for AAs and nucleotide biosynthesis, (3) as a carbon substrate
for the anaplerosis of the mitochondrial TCA cycle, (4) in redox balance by participating in
glutathione biosynthesis and generating NADPH [60,90]. PDAC cells metabolise glutamine through
a non-canonical pathway driven by K-RAS or MYC oncogenes in which transaminases, such as
Aspartate Aminotransferase, are essential [91].

5. PDAC Metabolic Signatures

Although initially it was thought that all PDAC tumours carried similar changes in metabolism,
the existence of subtypes with specific metabolic requirements has become apparent lately. This
section summarises and analyses reports that either directly identify metabolic subtypes in PDAC or
their existence can be inferred from the signatures classifying each subtype.

Daemen et al. [92] identified three different metabolic subtypes in PDAC cell lines through
metabolite profiling, further confirmed by transcriptional analysis: “slow-proliferating”, “glycolytic”
and “lipogenic” (Table 3). The slow-proliferating subtype was defined by reduced cellular
proliferation and low levels of AAs and carbohydrates. The glycolytic subtype showed high levels of
gene expression and metabolites from the glycolytic, pentose phosphate and serine pathways. In
contrast, the lipogenic group was characterised by sets of lipogenic genes and metabolites involved
in the synthesis of cholesterol and lipids and mitochondrial OXPHOS. Interestingly, while glutamine
contributed to TCA metabolites in glycolytic cell lines, the lipogenic ones used glucose to replenish
the TCA cycle, which was accompanied by increased oxygen consumption and mitochondrial
content. Finally, they created a signature defined by the expression ratio of the glycolytic gene ENO2
(neuron-specific enolase) and several lipid genes, further validated in 200 non-pancreatic cancer cell
lines. Interestingly, the authors observed a correlation among their metabolic subtypes and Collison’s
molecular subtypes [31]: Daemen’s lipogenic subtype is associated with the classical subtype, while
the glycolytic one is related to the quasi-mesenchymal subtype (Table 4). Accordingly, and in contrast
to the lipogenic subtype, the glycolytic subtype is very aggressive, grows rapidly, produces
metastases and generally does not respond to regular chemotherapy [92].
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Table 3. Metabolic PDAC signatures.
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Author

Daemen et
al. [92]

Zhao et al.
[34]

Lomberk et
al. [35]

Maurer et al.
[36]

Karasinska
etal. [93]

Type of Study

Metabolic
Transcriptional

Transcriptional

Epigenetic
Transcriptional

Transcriptional
Computational
modelling

Transcriptional
Mutational

Type and Number of

PDAC Samples

1. Metabolomic analysis

Cell lines (1 = 38)
2. Transcriptional
analysis
Cell lines (1 = 38)

1. Microarray datasets of
primary tumour samples

(n=1268)
TCGA (n=172)
GSE79670 (n=>51)
TCGC PACA-AU
(n=71)
MTAB-1791 (n =195)
ICGCarray (n=178)
GSE71729 (n =145)
GSE62165 (1 =118)
GSE62452 (n =69)
GSEb57495 (n=63)
GSE60980 (1 = 49)
GSE77858 (n =46)
GSEb55643 (n =45)
GSE15471 (n=39)
1. PDXs (n =24)
2. Clinical samples
microarray datasets
GSE71729 (n =145)
ICGC (n=178)
TCGA (n=172)

1. Primary PDAC
tumour samples
(n=122)

2. Clinical samples
microarray datasets
GSE71729 (UNC)
(n=125)
ICGC (n=93)
TCGA (n=127)

1. Transcriptional
datasets
TCGA (PAAD-US)
(n=61)
ICGC (PACA-CA)
(n=148)
COMPASS (n =90)

PanGen/POG (n = 26)
2. Mutational datasets
TCGA (PAAD-US) (n =

60)

ICGC (PACA-CA) (n=

86)

Dysregulated Pathways,
Metabolites and Mutations
Slow-proliferating: () amino

acids and carbohydrates levels
Glycolytic: (1) Metabolites and

genes in glycolytic, pentose

phosphate and serine pathways

Lipogenic: (1) Metabolites and
genes in cholesterol and de novo

lipid synthesis
L1: (1) Glycolytic and lipogenic
genes
L2: (1) Glycolytic genes

L3: (1) Protein metabolism and
digestive enzyme activity genes

Basal: (1) MYC, glucose
metabolism genes
Classical: (1) PPARs, lipid
metabolism genes

Classical: (1) lipogenic pathways
(cholesterol, retinol and steroid
hormone biosynthesis)

Quiescent: (]) metabolic activity
Glycolytic: Glycolytic genes. K-
RAS and MYC oncogenes
amplification
(1) expression MPC1 and MPC2
Cholesterogenic: (1) Cholesterol
biosynthesis genes

Mixed: (1) Glycolytic and
cholesterol biosynthesis genes

Prognosis

Bad

Good

Bad

Good

Good

Bad

Good
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1. Primary PDAC
tumour samples (1 = 90)
Dijk et al. .. 2. Pancreatic cancer Epithelial: (1) lipogenic
T 1
[37] ranscriptiona PDXs cohort (1 = 14) pathways
3. PDAC Cell lines
cohort (n =51)

Good

For each classification, type of study, type and number of samples, dysregulated pathways,
metabolites and mutations and prognosis are described in each column. Up-regulated and down-
regulated pathways are shown as (1) and (), respectively.

Table 4. Schematic overview of the correspondence of reported molecular and metabolic subtypes in

PDAC.
Authors Subtypes
Collisson et al. [31] Classical Quasi-mesenchymal
Moffit et al. [33] Classical Basal-like
Bailey et al. [39] Progenitor Squamous
Daemen et al. [91] Lipogenic Glycolytic
Zhao et al. [92] L1 (Glycolytic/lipogenic) L2 (Glycolytic)
Lomberk et al. [35] Classical (PPAR-dep) Basal (MYC/K-RAS dep)
Maurer et al. [36] Classical (lipid metabolism) Basal
Karasinska et al. [34] Cholesterogenic Glycolytic
Dijk et al. [37] Epithelial (lipid metabolism) Mesenchymal

Correlated subtypes are grouped in columns. Colours define the subgroups with the best (green) or
worst (red) prognosis.

As mentioned before, the L1, L2 and L6 PDAC subtypes described by Zhao et al.[34] were related
to metabolism (Table 3), while the L1 tumours up-regulated glycolytic and lipogenic genes and the
L2 subtype enriched glycolysis gene sets and down-regulated lipid metabolism ones. Finally, L6 up-
regulated genes associated with protein metabolism and digestive enzyme activity. We can find
similarities between Zhao’s and Daemen’s classifications: L2 would correspond to Daemen’s
glycolytic subtype, associated with poor prognosis in clinical samples, while L1 would constitute a
mixed group with characteristics of both glycolytic and lipogenic groups (Table 4).

The work by Lomberk et al. [35] analysing the epigenetic landscape of PDAC samples identified
super-enhancers and super-enhancer-associated TFs regulating metabolic nodes (Table 3). Indeed, the
classical subtype is associated with the up-regulation of TFs modulating lipid metabolism (PPAR),
while MYC, a known regulator of PDAC glycolytic phenotype [47], likely controls the basal subtype.

Maurer et al. [36] conducted analyses of gene set variance in different published cohorts (TGCA,
ICGC, UNC and CUMC), applying transcriptional deconvolution to identify the genes specifically
associated with the epithelial compartment (Table 3). Interestingly, they confirmed the correlation
between the classical subtype and lipid metabolism in the diverse datasets, highlighting cholesterol
biosynthesis and retinol metabolism (Table 4).

A recent study by Karasinska et al. [93] analysed the expression of genes related to glycolysis
and cholesterol synthesis in clinical samples (Table 3) to establish four metabolic subgroups of PDAC:
“quiescent”, “glycolytic”, “cholesterogenic” and “mixed”. While the quiescent group had poor
metabolic activity, the glycolytic and cholesterogenic subtypes enhanced one of these pathways. The
glycolytic subtype was characterised by the amplification of K-RAS and MYC oncogene and showed
the lowest expression of the mitochondrial pyruvate carriers MPC1 and MPC2. In addition, the
glycolytic group showed poor prognosis, whereas the cholesterogenic one reported the longest
median survival. Lastly, the mixed subtype presented high metabolic activity and enrichment in both
the glycolytic and cholesterol biosynthesis pathways. These metabolic subtypes were also found in
nine additional types of cancer. Karasinska et al. compared their metabolic classification with
previous molecular signatures (Table 4): the quiescent group predominantly belonged to Moffit’s
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classical subgroup, and it showed the highest frequency of ADEX and exocrine-like cases, suggesting
that the quiescent group might be involved in the secretion of digestive enzymes; the glycolytic
subtype was associated with the basal, squamous and quasi-mesenchymal subgroups, all related
with the worst outcome; finally, the cholesterogenic group had the lowest proportion of poor
prognosis signatures, but the highest in Bailey’s pancreatic progenitor subtype.

Coming back to the classification of Dijk et al. [37], the epithelial subtype showed an enrichment
in mitochondrial and lipid metabolism pathways such as OXPHOS, terpenoid backbone biosynthesis,
TCA cycle, steroid biosynthesis and FA degradation (Table 3). This suggests a link between Dijk’s
epithelial subtype and Daemen’s and Karasinka’s lipogenic subtypes, all of them correlated to the
classical classification (Table 4).

As seen for both molecular and metabolic stratification, all these classifications share subtypes
that are consistently present in PDAC. All stratifications comprise a classical subtype with better
prognosis corresponding to the lipogenic metabolic subtype. On the other hand, the quasi-
mesenchymal, basal or squamous subtypes, which are aggressive, metastatic and undifferentiated
tumours, are always related to the glycolytic subtype [32,94]. This strongly suggests an association
amongst the genetic signature, metabolic profile and tumour aggressiveness. Such a connection could
reflect the transcriptional program of a driver mutation such as the ones found in K-RAS, which
induces profound changes at the cellular level, including metabolic reprogramming. However, the
heterogeneity found in molecular and metabolic subtypes does not necessarily correspond to specific
mutations, suggesting an extra layer of complexity provided, for example, by the microenvironment.
Thus, defining metabolic subtypes represents a clear opportunity for patient stratification,
considering tumour phenotype independently of its mutational background, and opens a new
avenue for the identification of targeted therapies for each subgroup.

6. Metabolic Phenotypes and Survival in PDAC

As mentioned above, we can define at least two metabolic phenotypes consistently represented
across the different analyses, regardless of the main focus of the studies (molecular or metabolic
classification): glycolytic and lipogenic subtypes. Interestingly, bioinformatic analyses using TCGA
and GTEx databases indicate that genes from both metabolic pathways are significantly up-regulated
in tumoural vs. normal tissues (Figure 1). Amongst the genes included in this analysis, we can find
representative genes of the metabolic subtypes defined by Daemen et al., Zhao et al. and Karasinska
et al. in their respective stratification studies [34,92,93]: (1) for the glycolytic subtype, these are ENO2
(Daemen, Zhao, Karasinska) and lactate dehydrogenase 1 (LDH1) (Karasinska); (2) for the lipogenic
subtype, it concerns those involved in the triacylglycerol and cholesterol biosynthesis, such as
diacylglycerol O-acyltransferase 1 (DGAT1), 7-hydrocholesterol reductase (DHCR?), 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (HMGCS1) and mevalonate (diphospho-) decarboxylase (MVD)
(Daemen, Karasinska).

Disease-free survival analyses for the representative genes of the metabolic stratification studies
mentioned above revealed that, except for LDH1 and DHCR?, none of the individual genes had a
significant impact on patient survival (Figure 2a,b). Surprisingly, although not significant, a trend for
ENO?2 expression associated with better prognosis was observed (Figure 2a). In fact, previous studies
proved that up-regulated ENO2 contributes to the aggressiveness and poor prognosis of the
glycolytic subtype in pancreatic cancer [34,92,93]. Importantly, Daemen et al. proposed a gene
expression ratio based on ENO2 and a lipid signature composed by DGAT1, DHCR7, FDFTI1,
HMGCS1 and MVD to distinguish between glycolytic and lipogenic metabolic phenotypes for PDAC
and other cancer types. Considering the survival analyses in Figure 2a, we analysed the relationship
between the enrichment in glycolytic or lipogenic genes and prognosis, using a modified
glycolytic/lipogenic gene ratio from Daemen’s study that includes LDH1 instead of ENO2. In this line,
disease-free survival decreased significantly when the ratio LDHI1 and any of the lipogenic genes
increased; thus, when tumours were glycolytic (Figure 2c). Interestingly, the hazard ratio (HR)
combining LDH1 and MVD or DGAT1 reached values of up to 3.8, facilitating the distinction between
the two metabolic subtypes and their impact on prognosis. Although further work in this direction
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is certainly needed, the use of a simplified signature with the metabolic genes that most contribute to
prognosis could streamline patient stratification based on the phenotypic features of the tumours.
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Figure 1. Genes from the glycolytic and lipogenic pathways up-regulated in PDAC samples.
Expression of genes from glycolysis (a) triacylglycerol biosynthesis (b) and cholesterol biosynthesis
(c) were analysed in cancerous (1 = 179) and non-cancerous (n = 171) tissues (public gene expression
information from PDAC vs. non-tumoural or normal pancreas tissues collected in the TCGA and
GTEx databases) using GEPIA2 webtool (http://gepia2.cancer-pku.cn). The genes highlighted in the
PDAC stratification studies from Daemen et al., Zhao et al. and Karasinska et al. are shown in orange.
Significant differences in gene expression between cancerous and non-cancerous tissues was
calculated by ANOVA test and is represented by an asterisk (* p < 0.05).



J. Clin. Med. 2020, 9, 4128

(a)

Disease Free Survival

(b)

Disease Free Survival

(c)

17 of 23

LDH1/MV

Disease Free Survival

E = Low LDH1 Group = Low MVD Group E —— Low LDH1 Group
—— High LDH1 Greup —— High MVD Group —— High LDH1 Group
Logrank p=0.0023 Logrank p=0.86 Logrank p=2.4e-05
o HR(high)=2.7 HR(high)=0.99 ) HR(high)=3.8
E p(HR}=0.0035 p(HR)=0.87 = o plHRIE 05
& n{high)=45 ® nihigh)=45 w nihigh)=45
Ed n(low)=45 2 _.nllow)=45 2 nllow)=45
2 £ 22
3 H 2
t T E
@ = [} o =
S 4 — Q2 e
D
4 @ &
o o o T o
° o )
= = o
T T T T T T T T T T
0 20 40 80 80 20 40 60 80 20 40 80 80
Months Months Maonths
Disease Free Survival Disease Free Survival Disease Free Survival
o e =
2 —— Low ENOZ2 Gi = — Low HMGCS1 Groy = — Low LDH1 Group
 High ENioR Grop  High MMGCS1 Group — High LDH1 Group
Logrank p=0.36 Logrank p=0.35 Logrank p=0.00022
B HRihigh)=0.77 @ HR(high)=1.4 o HRthigh)=3.1
El PHR)=0.38 e p(HR)=0.35 s o ptHRIE0:00044
= ‘nihighy=45 5 | ik TR -+ nfhigh)=45 5 nihigh)=45
2 n(low)=45 2 n(low)=45 B3 nllow)=45
s o . e 3 [t
s
F ? 2
13 T =
g2 g3 gz
2 ] @
£ o o
o o o
s s s
[=] = (=}
=] = (=]
T T T T T T T T T T T
0 20 40 80 80 20 40 60 80 20 40 80 80
Months Months Months
Disease Free Survival Disease Free Survival
° o
- —— Low DHCR? Group o —— Low LDH1 Group
—— High DHCR? Group ~— High LDH1 Group
Logrank p=0.032 Logrank p=0.015
@ HR(high)=2.1 o HR(high)=2.1
< p(HR)=0.035 B p(HR)=0.018
® n(high)=45 = nihigh)=45
2 n{low)=44 Z nllow)=45
Se S g Lot
H 2
= =
[T
83 g3
@
& &
o &
s s
° o
= T T T T < T T T T
20 40 60 80 20 40 80 80
Months Months
Disease Free Survival Disease Free Survival
° o
2 e —— Low DGAT1 Group 2 e — Low LDH1 Group
L —— High DGAT1 Group ~— High LDH1 Group
Py Logrank p=0.64 Logrank p=3.8e-05
w | ; HR(high)=1.2 o | HR(high)=3.8
e WL T p(HR)=0.64 s | pIHR)=1e-04
s i il ....Dhigh)=45 & / nihigh)=45
2 n(low)=45 = nflew)=45
e 24 z 2
? 2
T =
Q =
g 31 8 21
& &
o &
s s
e | e |
= T T T T < T T T T
] 20 40 60 80 0 20 40 80 80

Months Months

Figure 2. Disease-free survival analysis based on the expression of the genes selected for different
metabolic classification systems. (a). LDH1 and ENO?2. (b) MVD, HMGCS1, DHCRT and DGAT1. (c)
Ratio LDH1 and MVD, HMGCS1, DHCR7 or DGAT1. Comparison of upper and lower population
quartiles is displayed. Log-rank test, Hazard Ratio (HR) and their corresponding p-values were
calculated based on the COX model. Analyses were performed using the GEPIA2 web tool
(http://gepia2.cancer-pku.cn) using public gene expression information collected in the TCGA
database.
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7. Conclusions

PDAC is a heterogeneous disease that can be classified, according to its metabolic needs, into
glycolytic and lipogenic subtypes with different prognosis. Indeed, the glycolytic subtype would be
more aggressive and resistant to conventional chemotherapy than the lipogenic one. This metabolic
stratification correlates with previous molecular classification systems, as they show subtypes
sharing similar characteristics and prognosis. In this context, classification into metabolic subtypes
may be better placed for clinical use, since it could provide information on the functional phenotype
of the tumour, correlating to aggressiveness, chemoresistance and metastatic abilities independently
from its mutational state. The information collected in this review strongly suggests that patient
stratification based on metabolic features may bear prognostic value and guide therapeutic decisions
in the future, identifying a subgroup of patients with poor prognosis that may be eligible to
personalised treatments designed according to metabolic vulnerabilities.
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